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List of Basic Notations

Coulomb potential VC(r) = Q=r, Q = �2�e
2Z1Z2

~2 with � = �1
corresponding to repulsion or attraction cases

Schrödinger equation with Coulomb potential

[H0 + VC(r)� k2] C(r;k) = 0

Free Hamiltonian H0 = ��r

Coulomb wave function

 C(r;k) = (2�)�3=2eik�re���=2�(1 + i�)1F1(�i�; 1; i(kr � k � r))

Plane wave  0(r;k) = expfir � kg

Sommerfeld parameter � = Q=(2k)

Coulomb phase shift �` = arg �(`+ 1 + i�)

The regular Coulomb function F`(�; z), the irregular Coulomb
function G`(�; z), the Coulomb spherical waves

u�` (�; z) = ei�` [G`(�; z)� iF`(�; z)], Riccati-Bessel function
ĵ`(z) = F`(0; z), Riccati-Hankel function ĥ

+
` (z) = u+` (0; z).
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I. Splitting of the Coulomb potential into

the core VR and tail V R potentails

The Coulomb potential

VC(r) =
Q

r
� VR(r) + V R(r)

The core potential

VR(r) =

(
Q=r r < R
0 r � R

The tail potential

V R(r) =

(
0 r < R
Q=r r � R
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II. Solution for the core potential VR

The Schrödinger equation of the problemh
H0 + VR(r)� k2

i
 R(r;k) = 0

is solved by the partial wave expansion

 R(r;k) =
1

kr

X
`�0

(2`+ 1)i`v`(r; k)P`(r̂ � k̂):

The partial waves v`(r; k) are given by

v`(r; k) =

(
aR`F`(�; kr) r < R

ĵ`(kr) + AR`ĥ
+
` (kr) r � R

where aR` and AR` are calculated through the Wronskians

aR` =WR(ĵ`; ĥ
+
` )=WR(F`; ĥ

+
` ); AR` =WR(ĵ`; F`)=WR(F`; ĥ

+
` )
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Properties of the solution  R

1) For r < R

 R(r;k) =

Z
dk̂0aR(k̂; k̂

0) C(r; kk̂
0)

with the kernel

aR(k̂; k̂
0) =

X
l�0

2`+ 1

4�
aR`e

�i�`P`(k̂ � k̂
0):

Asymptotically, when R!1

aR` � ei�`�i� log 2kR

Consequently,

aR(k̂; k̂
0) � e�i� log 2kR�(k̂ � k̂0)
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Properties of the solution  R
2) For r � R

 R(r;k) = eir�k + vsc(r;k)

where

vsc(r;k) =
1

kr

1X
`=0

(2`+ 1)i`AR` ĥ
+
` (kr)P`(k̂ � k̂

0):

Asymptotically, when r !1

vsc(r;k) � AR(u; k)e
ikr=r; u = k̂ � k̂0

with the amplitude

AR(u; k) =
1

k

1X
`=0

(2`+ 1)AR`P`(u)

If R!1

AR(u; k) � e�2i� log 2kRAC(u; k)
� 2

k e
�i� log 2kR sin(� log 2kR) �(u� 1)
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The Green function for VR potential

The Green function G+(E) = (H0 + VR � E + i0)�1 is given by the

partial wave representation

G+
R(r; r

′; k2) =
1

4�

1X
`=0

(2`+ 1)
GR`(r; r

0; k2)

rr0
P`(r̂ � r̂

′)

For the most important con�guration when r; r0 � R the partial wave

components read

GR`(r; r
0; k2) =

1

k
F`(�; kr<)H

+
` (�; kr>) +

�R`(k)

k
F`(�; kr)F`(�; kr

0);

�R`(k) = �WR(ĥ
+
` ; H

+
` )=WR(ĥ

+
` ; F`):
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The Green function for VR potential

Summation of partial series in the region r; r0 � R leads to

G+
R(r; r

′; k2) = GC(r; r
′; k2+) +QR(r; r

′; k2);

where GC(r; r
′; k2+) is the Coulomb Green function and QR is given by

QR(r; r
0; k2) =

1

2i

Z 1

�1
d� ZR(�; �)[GC(rx̂; r

0x̂0; k2+)�GC(rx̂; r
0x̂0; k2�)]:

k2� = k2 � i0; � = r̂ � r̂0; � = x̂ � x̂0

ZR(�; �) =
1X
`=0

(`+ 1=2)�R`(k)P`(�)P`(�)

�R`(k) = �WR(ĥ
+
` ; H

+
` )=WR(ĥ

+
` ; F`)
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The Green function for VR potential

Asymptotically, when R!1

�R`(k) = i� exp(2i�`)=(kR) +O(1=R2);

where �` = kR� � log(2kR)� �`=2 + �`. For the L2(�1; 1) norm of the

kernel ZR one gets

kZRk = max
`
j�R`(k)j = �=(kR) +O(R�2):

Therefore

QR(r; r
0; k2) = O(1=R)

GR(r; r
0; k2) = GC(r; r

0; k2) +O(1=R)
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T-matrix for VR potential

Transition operator

TR(z) = VR � VRGR(z)VR

Takes the form

TR(z) = VR � VRGC(z)VR � VRQR(z)VR:

Asymptotically, when R!1

TR(z) = VR � VRGC(z)VR +O(1=R)
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III. Solution for the tail V R potential

The Schrödinger equation of the problemh
H0 + V R(r)� k2

i
 R(r;k) = 0

is solved by the partial wave expansion

 R(r;k) =
1

kr

X
`�0

(2`+ 1)i`w`(r; k)P`(r̂ � k̂):

The partial waves w`(r; k) are given by

w`(r; k) =

(
aR` ĵ`(kr) r < R

ei�`F`(�; kr) + AR
` u

+
` (kr) r � R

where aR` and AR
` are calculated through the Wronskians

aR` = ei�`WR(F`; u
+
` )=WR(ĵ`; u

+
` ); AR` = ei�`WR(F`; ĵ`)=WR(ĵ`; u

+
` )
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Properties of the solution  R

1) For r < R

 R(r;k) =

Z
dk̂0aR(k̂; k̂0) 0(r; kk̂

0)

with the kernel

aR(k̂; k̂0) =
X
l�0

2`+ 1

4�
aR` P`(k̂ � k̂

0):

Asymptotically, when R!1
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Properties of the solution  R

2) For r � R
 R(r;k) =  C(r;k) + wsc(r;k)

where

wsc(r;k) =
1

kr

X
`�0

(2`+ 1)i`AR
` u

+
` (�; kr)P`(k̂ � k̂

0):

Asymptotically, when r !1

wsc(r;k) � AR(u; k)ei(kr�� log 2kr)=r; u = k̂ � k̂0

with the amplitude

AR(u; k) =
1

k

X
`�0

(2`+ 1)AR
` P`(u)

If R!1

AC(u; k) + AR(u; k) � 2
k e

i� log 2kR sin(� log 2kR) �(u� 1)
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IV. Solution of the Coulomb problem in terms of core
and tail solutions

The solution to the Coulomb Schrödinger equation

[H0 + VC ] C = k2 C

by the splitting procedure VC = V R + VR can be represented as

 C =  R � [H0 + VC � k2 + i0]�1VR 
R

or equivalently in the form of the integral equation of the

Lippmann-Schwinger type

 C =  R � [H0 + V R � k2 + i0]�1VR C
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IV. Solution of the Coulomb problem in terms of core
and tail solutions

Asymptotically, when r !1

 C(r;k) �  R(r;k) + FRe
i(kr�� log 2kr)=r

where the amplitude is de�ned as

FR = �2�2h R(�)(k0)jVR j C(k)i:

Here  R(�)(r;k0) = ( R(r;�k0))�.
The further representation for the amplitude FR has the form

FR = �2�2[h R(�)(k0)jTR(k
2 + i0)j R(k)i

+h R(�)(k0)jQR(k
2 + i0)j R(k)i]
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IV. Solution of the Coulomb problem in terms of core
and tail solutions

Asymptotically, when R!1

FR = �2�2e2i� log 2kRh 0(k
0)jTR(k

2 + i0)j 0(k)i+O(1=R)

and then

the total Coulomb amplitude receives the representation

AC =
2

k
ei� log 2kR sin(� log 2kR) �(u� 1)

� 2�2e2i� log 2kRh 0(k
0)jTR(k

2 + i0)j 0(k)i+O(1=R)
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RÉSUMÉ

The splitting approach allows to treat the long-range scattering

problem on the basis of the short-range formalism

The use of the splitting approach for systems of N � 3 particles

seems to be very promising
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