2N AND 3N Systems in three dimensional FORMALISM

Kacper Topolnicki
M. Smoluchowski Institute of Physics, Jagiellonian University, Poland

September 9, 2013

Jacek Golak ${ }^{1}$, Roman Skibiński ${ }^{1}$, A.E. Elmeshneb ${ }^{1}$, Henryk Witała ${ }^{1}$, Andreas Nogga ${ }^{2}$, Hiroyuki Kamada ${ }^{3}$

${ }^{1}$ M. Smoluchowski Institute of Physics, Jagiellonian University, Poland
${ }^{2}$ Forschungszentrum Jülich, Institut für Kernphysik, Institute for Advanced Simulation and Jülich Center for Hadron Physics, Germany
${ }^{3}$ Departament of Physics, Faculty of Engineering, Kyushu Institute of Technology, Japan

DECENT QM

- Calculations within the confines of a well defined set of DOF. The proton and the neutron are two states of the spin $\frac{1}{2}$ isospin $\frac{1}{2}$ nucleon. We use three dimensional states:

$$
\begin{gathered}
\left|\mathbf{k}_{1} \mathbf{k}_{2}\right\rangle \otimes|\uparrow \downarrow\rangle^{\text {isospin }} \otimes|\uparrow \uparrow\rangle^{\text {spin }},|\mathbf{K p}\rangle \otimes|\uparrow \downarrow\rangle^{\text {isospin }} \otimes|\uparrow \downarrow\rangle^{\text {spin }} \\
\left|\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}\right\rangle \otimes|\uparrow \downarrow \downarrow\rangle^{\text {isospin }} \otimes|\uparrow \downarrow \downarrow\rangle^{\text {spin }},|\mathbf{K p q}\rangle \otimes|\uparrow \downarrow \downarrow\rangle^{\text {isospin }} \otimes|\downarrow \uparrow \downarrow\rangle^{\text {spin }} .
\end{gathered}
$$

DECENT QM

- Classical QM - always start with the Schrödinger (or Faddeev) equation:

$$
\begin{gathered}
i \hbar \partial_{t}|\psi(t)\rangle=\check{H}|\psi(t)\rangle \\
|\psi(t)\rangle=\exp \left(-i \check{H}\left(t-t_{0}\right)\right)\left|\psi\left(t_{0}\right)\right\rangle .
\end{gathered}
$$

or LSE:

$$
t=t+\check{V} \check{G}_{0} t
$$

COMPLEXITY

- Classical non-relativistic QM, but calculations get quite complicated.
- A lot of pieces of the puzzle must fit together.
- Gargantuan mathematical expressions make analytical calculations practically impossible. This is especially true for 3 N systems.
- Code for the numerical solution (that uses the complicated expressions) must not contain errors. Depending on the problem - possibly thousands of lines of FORTRAN code to be generated (implements eg. momentum dependent matrix elements). Each,+- must be in the proper place. This process must be automated.

Mathematica system
Exponential increase in efficiency. What used to take months now

COMPLEXITY

- Classical non-relativistic QM, but calculations get quite complicated.
- A lot of pieces of the puzzle must fit together.
- Gargantuan mathematical expressions make analytical calculations practically impossible. This is especially true for 3 N systems.
- Code for the numerical solution (that uses the complicated expressions) must not contain errors. Depending on the problem - possibly thousands of lines of FORTRAN code to be generated (implements eg. momentum dependent matrix elements). Each,+- must be in the proper place. This process must be automated.
- Our solution - extensive use of symbolic programming within the Mathematica system.

Exponential increase in efficiency. What used to take months now

COMPLEXITY

- Classical non-relativistic QM, but calculations get quite complicated.
- A lot of pieces of the puzzle must fit together.
- Gargantuan mathematical expressions make analytical calculations practically impossible. This is especially true for 3 N systems.
- Code for the numerical solution (that uses the complicated expressions) must not contain errors. Depending on the problem - possibly thousands of lines of FORTRAN code to be generated (implements eg. momentum dependent matrix elements). Each,+- must be in the proper place. This process must be automated.
- Our solution - extensive use of symbolic programming within the Mathematica system.
- Exponential increase in efficiency. What used to take months now takes 15 min and a click of a button.

WHY 3D CALCULATIONS?

- Basic idea - given a linear operator \check{O} (any implementation will do, no explicit matrix representation necessary) and a starting vector \mathbf{v} calculate the KRYLOV subspace:

$$
K(\check{O}, \mathbf{v})=\operatorname{span}(\mathbf{v}, \check{O} \mathbf{v}, \check{O} O \check{O} \mathbf{v}, \ldots)
$$

- More sophisticated numerically stable algorithms are available eg. Arnoldi iteration - they produce the same space.
- Work with \check{O} projected onto this subspace.

WHY 3D CALCULATIONS?

- The choice of partial wave channels is to some degree arbitrary.
- More precise predictions \rightarrow take a larger number of channels (matrix elements of operators not necessarily organized by their magnitude).
- Using Krylov subspace methods and 3D representation automatically organizes matrix elements according to their size. This gives hope for better precision.
- 3D calculations utilize all partial waves.
- Why not! Rare opportunity to gain direct insight into the nuclear processes.

OUR SCHEME

- Chose a potential ($2 \mathrm{~N}, 3 \mathrm{~N}$) and a problem (2 N bound state, transition operator (NN t matrix), 3N bound state).
- Calculate the hard part (analytical expressions and FORTRAN code) using Mathemaica.
- Construct a FORTRAN implementation of linear operators (resulting directly from the Schrödinger equation with some additional constraints on the states of the system under consideration) from automatically generated code.
- Use Krylov subspace methods to reduce the size of the operators (this is especially needed for large 3 N systems and requires the use of powerful computing clusters - JUQUEEN in FZJ).
- Solve the reduced (say 40×40 dimensional) linear (eigen) equation using classical methods. We use LAPACK or Mathematica linear solvers.
- Compare results with classical PWD calculations.

DEUTERON

- ϕ_{1}, ϕ_{2} describe the 2 N bound state.
- Linear operator (acing in the space of scalar functions ϕ).
- Expressed in terms of integrals but an explicit matrix representation is also available.

$$
\begin{array}{r}
\left(\check{K}^{d}\left(E_{d}\right) \phi\right)_{q}(|\mathbf{p}|)= \\
\frac{1}{E_{d}-\frac{\mathbf{p}^{2}}{m}} \int \mathrm{~d}^{3} \mathbf{p}^{\prime} \sum_{j=1}^{6} v_{j}^{00}\left(\mathbf{p}, \mathbf{p}^{\prime}\right) \sum_{k^{\prime \prime}=1}^{2} \\
\left(\sum_{k}\left(A^{d}(\mathbf{p})\right)_{q k}^{-1} B_{k j k^{\prime \prime}}^{d}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)\right) \phi_{k^{\prime \prime}}\left(\left|\mathbf{p}^{\prime}\right|\right) \\
\check{K} \leftrightarrow \text { operator } \\
\phi \leftrightarrow \phi_{1}, \phi_{2} \\
\left.(\check{K} \phi)_{q}(|\mathbf{p}|), \phi_{q}| | \mathbf{p} \mid\right) \leftrightarrow \text { take value at } \ldots
\end{array}
$$

DEUTERON

- ϕ_{1}, ϕ_{2} describe the 2 N bound state.
- Linear operator (acing in the space of scalar functions ϕ).
- Expressed in terms of integrals but an explicit matrix representation is also available.

$$
\begin{array}{r}
\left(\check{K}^{d}\left(E_{d}\right) \phi\right)_{q}(|\mathbf{p}|)= \\
\frac{1}{E_{d}-\frac{\mathbf{p}^{2}}{m}} \int \mathrm{~d}^{3} \mathbf{p}^{\prime} \sum_{j=1}^{6} v_{j}^{00}\left(\mathbf{p}, \mathbf{p}^{\prime}\right) \sum_{k^{\prime \prime}=1}^{2} \\
\left(\sum_{k}\left(A^{d}(\mathbf{p})\right)_{q k}^{-1} B_{k j k^{\prime \prime}}^{d}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)\right) \phi_{k^{\prime \prime}}\left(\left|\mathbf{p}^{\prime}\right|\right) \\
\check{K} \leftrightarrow \text { operator } \\
\phi \leftrightarrow \phi_{1}, \phi_{2} \\
(\check{K} \phi)_{q}(|\mathbf{p}|), \phi_{q}(|\mathbf{p}|) \leftrightarrow \text { take value at } \ldots
\end{array}
$$

Time independent Schrödinger equation
$\rightarrow\left(\check{K}^{d}(E) \phi\right)_{q}(|\mathbf{p}|)=\lambda \phi_{q}(|\mathbf{p}|)$ - find E such that $\lambda \approx 1\left(E \approx E_{d}\right)$.

DEUTERON

- $\phi_{q}(|\mathbf{p}|)-2 \cdot 40=80$ dimensional vector.
- $\check{K}^{d}\left(E_{d}\right)-80 \times 80$ matrix.
- $\left(\sum_{k}\left(A^{d}(\mathbf{p})\right)_{q k}^{-1} B_{k j k^{\prime \prime}}^{d}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)\right)$ - calculated in Mathematica.
- $v_{j}^{00}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)-2 \mathrm{~N}$ potential (decomposed).
- Small problem, a chance to test our Krylov subspace method

DEUTERON

- $\phi_{q}(|\mathbf{p}|)-2 \cdot 40=80$ dimensional vector.
- $\check{K}^{d}\left(E_{d}\right)-80 \times 80$ matrix.
- $\left(\sum_{k}\left(A^{d}(\mathbf{p})\right)_{q k}^{-1} B_{k j k^{\prime \prime}}^{d}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)\right)$ - calculated in Mathematica.
- $v_{j}^{00}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)-2 \mathrm{~N}$ potential (decomposed).
- Small problem, a chance to test our Krylov subspace method approach.

DEUTERON

Two-nucleon systems in three dimensions
Phys. Rev. C 813 (2010)
Golak, J. and Glöckle, W. and Skibiński R. and Witała H. and Rozpqdzik D. and Topolnicki, K. and Fachruddin, I. and Elster, Ch. and Nogga, A.

TRANSITION OPERATOR (T MATRIX)

- Linear operators in the space of scalar functions t.
- The transition operator

$$
\begin{aligned}
& \left((\check{\mathcal{B}} t)_{k}^{\{\gamma\}}\left(\{E \in\},\left|\mathbf{p}^{\prime}\right|,\{|\mathbf{p}|\}, x^{\prime}\right)=\right. \\
& \int_{0}^{+\infty} \mathrm{d}\left|\mathbf{p}^{\prime \prime}\right| \int_{-1}^{1} \mathrm{~d} \mathrm{x}^{\prime \prime} \int_{0}^{2 \pi} \mathrm{~d} \phi^{\prime \prime} \sum_{j=1}^{6} \sum_{j^{\prime}=1}^{6} \frac{\left.\left|\mathbf{p}^{\prime \prime}\right|\right|^{2}}{\{E\}-\frac{\left.\mathbf{p}^{\prime \prime \prime}\right|^{2}}{m}+i \epsilon} \\
& v_{j}^{\{q\}}\left(\left|\mathbf{p}^{\prime}\right|,\left|\mathbf{p}^{\prime \prime}\right|, \sqrt{1-x^{\prime 2}} \sqrt{1-x^{\prime \prime 2}} \cos \phi^{\prime \prime}+x^{\prime} x^{\prime \prime}\right) \\
& \mathcal{B}_{k j j^{\prime}}\left(\left|\mathbf{p}^{\prime}\right|,\{|\mathbf{p}|\}, x^{\prime},\left|\mathbf{p}^{\prime \prime}\right|, x^{\prime \prime}, \phi^{\prime \prime}\right) \\
& t_{j^{\prime}}^{\{\gamma\}}\left(\{E\},\left|\mathbf{p}^{\prime \prime}\right|,\{|\mathbf{p}|\}, x^{\prime \prime}\right)
\end{aligned}
$$ is fully determined by the set of $6 t$ functions.

- An explicit matrix representation is available.

$$
\begin{array}{r}
\left.\left(\check{f}\left(\left|\mathbf{p}^{\prime \prime}\right|\right) t\right)\right)_{k}^{\{\gamma\}}\left(\{E\},\left|\mathbf{p}^{\prime}\right|,\{|\mathbf{p}|\}, x^{\prime}\right)= \\
m \int_{-1}^{1} d^{\prime \prime} \int_{0}^{2 \pi} \mathrm{~d} \phi^{\prime \prime} \sum_{j=1}^{6} \sum_{j^{\prime}=1}^{6} \\
v_{j}^{\{q\}}\left(\left|\mathbf{p}^{\prime}\right|,\left|\mathbf{p}^{\prime \prime}\right|, \sqrt{1-x^{\prime 2}} \sqrt{1-x^{\prime \prime 2}} \cos \phi^{\prime \prime}+x^{\prime} x^{\prime \prime}\right) \\
\mathcal{B}_{k j j^{\prime}}\left(\left|\mathbf{p}^{\prime}\right|,\{|\mathbf{p}|\}, x^{\prime},\left|\mathbf{p}^{\prime \prime}\right|, x^{\prime \prime}, \phi^{\prime \prime}\right) \\
t_{j^{\prime}}^{\{\gamma\}}\left(\{E\},\left|\mathbf{p}^{\prime \prime}\right|,\{|\mathbf{p}|\}, x^{\prime \prime}\right)
\end{array}
$$

TRANSITION OPERATOR (T MATRIX)

- Linear operators in the space of scalar functions t.
- The transition operator

$$
\begin{array}{r}
(\check{\mathcal{B}} t)_{k}^{\{\gamma\}}\left(\{E\},\left|\mathbf{p}^{\prime}\right|,\{|\mathbf{p}|\}, x^{\prime}\right)= \\
\int_{0}^{+\infty} \mathrm{d}\left|\mathbf{p}^{\prime \prime}\right| \int_{-1}^{1} \mathrm{~d} x^{\prime \prime} \int_{0}^{2 \pi} \mathrm{~d} \phi^{\prime \prime} \sum_{j=1}^{6} \sum_{j^{\prime}=1}^{6} \frac{\left|\mathbf{p}^{\prime \prime}\right|^{2}}{\{E\}-\frac{\left|\mathbf{p}^{\prime \prime}\right|^{2}}{m}+i \epsilon} \\
v_{j}^{\{\gamma\}}\left(\left|\mathbf{p}^{\prime}\right|,\left|\mathbf{p}^{\prime \prime}\right|, \sqrt{1-x^{\prime 2}} \sqrt{1-x^{\prime \prime 2}} \cos \phi^{\prime \prime}+x^{\prime} x^{\prime \prime}\right) \\
\mathcal{B}_{k j j^{\prime}}\left(\left|\mathbf{p}^{\prime}\right|,\{|\mathbf{p}|\}, x^{\prime},\left|\mathbf{p}^{\prime \prime}\right|, x^{\prime \prime}, \phi^{\prime \prime}\right) \\
t_{j^{\prime}}^{\{\gamma\}}\left(\{E\},\left|\mathbf{p}^{\prime \prime}\right|,\{|\mathbf{p}|\}, x^{\prime \prime}\right)
\end{array}
$$ is fully determined by the set of $6 t$ functions.

- An explicit matrix representation is available.

$$
\begin{array}{r}
\left(\breve{f}\left(\left|\mathbf{p}^{\prime \prime}\right|\right) t\right)_{k}^{\{\gamma\}}\left(\{E\},\left|\mathbf{p}^{\prime}\right|,\{|\mathbf{p}|\}, x^{\prime}\right)= \\
m \int_{-1}^{1} \mathrm{~d} x^{\prime \prime} \int_{0}^{2 \pi} \mathrm{~d} \phi^{\prime \prime} \sum_{j=1}^{6} \sum_{j^{\prime}=1}^{6} \\
v_{j}^{\{\gamma\}}\left(\left|\mathbf{p}^{\prime}\right|,\left|\mathbf{p}^{\prime \prime}\right|, \sqrt{1-x^{\prime 2}} \sqrt{1-x^{\prime \prime 2}} \cos \phi^{\prime \prime}+x^{\prime} x^{\prime \prime}\right) \\
\mathcal{B}_{k j j^{\prime}}\left(\left|\mathbf{p}^{\prime}\right|,\{|\mathbf{p}|\}, x^{\prime},\left|\mathbf{p}^{\prime \prime}\right|, x^{\prime \prime}, \phi^{\prime \prime}\right) \\
t_{j^{\prime}}^{\{\gamma\}}\left(\{E\},\left|\mathbf{p}^{\prime \prime}\right|,\{|\mathbf{p}|\}, x^{\prime \prime}\right)
\end{array}
$$

$$
\mathrm{LSE} \rightarrow t=v+\check{\mathcal{B}} t
$$

TRANSITION OPERATOR

- $\left.t_{k}^{\{\gamma\}}{ }^{\{ }{ }_{\{E\}},\left|\mathbf{p}^{\prime}\right|,\{\mid \mathbf{P |}\}, x^{\prime}\right)$ - for each $\gamma, E,|\mathbf{p}|-6 \cdot 40 \cdot 40=9600$ dimensional vector.
- $(\check{\mathcal{B}} t)_{k}^{\{\gamma\}}\left(\{E\},\left|\mathbf{p}^{\prime}\right|,\{|p|\}, x^{\prime}\right)-4 \cdot 40 \cdot<$ number of energies $>$ 9600×9600 dimensional independent problems problems.
- Cases with $E>0$ and $E<0$ need to be considered separately.
- $E<0$ - singularity around the deuteron binding energy, we need to substitute $\check{V}\left|\phi_{d}\right\rangle_{\frac{1}{E-E_{b}}}\left\langle\phi_{d}\right| \check{V}$. All expressions simple to calculate with our tools.
- $E>0$ - problem with singularity in $\check{\mathcal{B}}$ (we introduce \check{f}).

TRANSITION OPERATOR $E<0$

A slice through $\left.t_{i}^{\{\gamma\}}{ }_{\{E\}},\left|\mathbf{p}^{\prime}\right|,\{|\mathbf{p}|\}, x^{\prime}\right)$ (the cross represents deuteron substitution):

T OPERATOR ON SHELL $-E=300 \mathrm{MeV}$

Different Methods for the Two-Nucleon T-Matrix in the Operator Form
Few-Body Systems 2012 (53 237-252)
Golak, J. and Skibiński, R. and Witała, H. and Topolnicki, K. and Glöckle, W. and Nogga, A. and Kamada, H.

The Quantum Mechanical Few-Body Problem. Walter Glöckle (Springer-Verlag)

T OPERATOR ON SHELL $-E=300 \mathrm{MeV}$

Different Methods for the Two-Nucleon T-Matrix in the Operator Form
Few-Body Systems 2012 Golak, J. and Skibiński, R. and Witała, H. and Topolnicki, K. and Glöckle, W. and Nogga, A. and Kamada, H.

T OPERATOR ON SHELL $-E=300 \mathrm{MeV}$

Different Methods for the Two-Nucleon T-Matrix in the Operator Form
Few-Body Systems 2012
Golak, J. and Skibiński, R. and Witała, H. and Topolnicki, K. and Glöckle, W. and Nogga, A. and Kamada, H.

3N BOUND STATE

- Linear operator in the space of β scalar functions.
- The 3 N bound state is determined by the 8β

$$
\begin{array}{r}
\left(\check{P}_{1223}^{\text {scalar }} \beta\right)_{t^{\prime} T^{\prime}}^{(k)}\left(\left|\mathbf{p}^{\prime}\right|,\left|\mathbf{q}^{\prime}\right|, \hat{\mathbf{p}}^{\prime} \cdot \hat{\mathbf{q}}^{\prime}\right)= \\
\sum_{t T} \sum_{i=1}^{8} \beta_{t T}^{(i)}\left(\left|\mathbf{P}^{2312}\left(\mathbf{p}^{\prime}, \mathbf{q}^{\prime}\right)\right|,\left|\mathbf{Q}^{2312}\left(\mathbf{p}^{\prime}, \mathbf{q}^{\prime}\right)\right|,\right. \\
\left.\hat{\mathbf{p}}^{2312}\left(\mathbf{p}^{\prime}, \mathbf{q}^{\prime}\right) \cdot \hat{\mathbf{Q}}^{2312}\left(\mathbf{p}^{\prime}, \mathbf{q}^{\prime}\right)\right) \\
C_{t^{\prime} T^{\prime} k ; t T_{i}}^{1223}\left(\mathbf{p}^{\prime}, \mathbf{q}^{\prime}\right)
\end{array}
$$ functions.

- Currently no explicit matrix representation is available - it is constructed from integrals.

$$
\begin{array}{r}
\left(\check{P}_{1323}^{\text {scalar }} \beta\right)_{t^{\prime} T^{\prime}}^{(k)}\left(\left|\mathbf{p}^{\prime}\right|,\left|\mathbf{q}^{\prime}\right|, \hat{\mathbf{p}}^{\prime} \cdot \hat{\mathbf{q}}^{\prime}\right)= \\
\sum_{t T} \sum_{i=1}^{8} \beta_{t T}^{(i)}\left(\left|\mathbf{P}^{2313}\left(\mathbf{p}^{\prime}, \mathbf{q}^{\prime}\right)\right|,\left|\mathbf{Q}^{2313}\left(\mathbf{p}^{\prime}, \mathbf{q}^{\prime}\right)\right|,\right. \\
\left.\hat{\mathbf{p}}^{2313}\left(\mathbf{p}^{\prime}, \mathbf{q}^{\prime}\right) \cdot \hat{\mathbf{Q}}^{2313}\left(\mathbf{p}^{\prime}, \mathbf{q}^{\prime}\right)\right) \\
C_{t^{\prime} T^{\prime} k ; t T i}^{1323}\left(\mathbf{p}^{\prime}, \mathbf{q}^{\prime}\right)
\end{array}
$$

Schrödinger (Faddeev) equation
$\rightarrow\left(\check{G}_{0}(E)\left(\check{V}^{\text {scalar }}+\check{V}^{(1) \text { scalar }}\right)\left(\check{1}+\check{P}_{1223}^{\text {scalar }}+\check{P}_{1323}^{\text {scalar }}\right)\right) \beta=\lambda \beta$ solve and find E such that $\lambda \approx 1$.

3N BOUND STATE

- Linear operator in the

$$
\begin{array}{r}
\left(\check{V}^{\text {scalar }} \beta\right)_{t^{\prime} T^{\prime}}^{(k)}\left(\left|\mathbf{p}^{\prime}\right|,\left|\mathbf{q}^{\prime}\right|, \hat{\mathbf{p}}^{\prime} \cdot \hat{\mathbf{q}}^{\prime}\right)= \\
\int \mathrm{d}^{3} \mathbf{p}^{\prime} \sum_{i=1}^{8} \sum_{T} \sum_{j=1}^{6} \beta_{t T^{\prime}}^{(i)}\left(\left|\mathbf{p}^{\prime}\right|,|\mathbf{q}|, \hat{\mathbf{p}}^{\prime} \cdot \hat{\mathbf{q}}\right) v_{j}^{t T t T^{\prime}}\left(|\mathbf{p}|,\left|\mathbf{p}^{\prime}\right|, \hat{\mathbf{p}} \cdot \hat{\mathbf{p}}^{\prime}\right) \\
\left(C^{-1} L\right)_{k j i}\left(\mathbf{p}, \mathbf{q} ; \mathbf{p}, \mathbf{p}^{\prime} ; \mathbf{p}^{\prime}, \mathbf{q}\right)
\end{array}
$$ space of β scalar functions.

- The 3 N bound state is determined by the 8β functions.
- Currently no explicit matrix representation is available - it is constructed from integrals.

$$
\sum_{i=1}^{8} \int \mathrm{~d}^{3} \mathbf{p} \int \mathrm{~d}^{3} \mathbf{q} \sum_{t^{\prime}} \beta_{t T}^{(i)}(|\mathbf{p}|,|\mathbf{q}|, \hat{\mathbf{p}} \cdot \hat{\mathbf{q}})\left(C^{-1} E\right)_{r i}^{t t T}(\mathbf{p q} ; \mathbf{p q p q} ; \mathbf{p q})
$$

Schrödinger equation
$\rightarrow\left(\check{G}_{0}(E)\left(\check{V}^{\text {scalar }}+\check{V}^{(1) \text { scalar }}\right)\left(\check{1}+\check{P}_{1223}^{\text {scalar }}+\check{P}_{1323}^{\text {scalar }}\right)\right) \beta=\lambda \beta$ solve and find E such that $\lambda \approx 1$.

3N BOUND STATE

- $\beta_{t^{\prime} T^{\prime}}^{(k)}\left(\left|\mathbf{p}^{\prime}\right|,\left|\mathbf{q}^{\prime}\right|, \hat{\mathbf{p}}^{\prime} \cdot \hat{\mathbf{q}}^{\prime}\right)-3 \cdot 8 \cdot 40 \cdot 40 \cdot 40=1536000$ dimensional vectors.
- $\check{V}^{\text {scalar }}, \check{V}^{(1) \text { scalar }}, \check{P}_{1223}^{\text {scalar }}, \check{P}_{1323}^{\text {scalar }}-1536000 \times 1536000$ dimensional operators.
- Large computational resources necessary - JUQUEEN in FZJ JUELICH.

A Three-Dimensional Treatment of the

 Three-Nucleon Bound StateFew-Body Systems 2012
Golak, J. and Topolnicki, K. and Skibiński, R. and Glöckle, W. and Kamada, H. and Nogga, A.

	PWD	3D
λ	1.0	0.99976
$\left\langle E_{\text {kin }}>\right.$	33.448	33.412
$\left\langle E_{\text {pot }}^{2 \mathrm{~N}}\right\rangle$	-41.329	-41.273
$\left\langle E_{\text {pot }}^{3 \mathrm{~N}}>\right.$	-0.765	-0.770
total energy	-8.646	-8.631

SUMMARY AND OUTLOOK

- We developed a new framework for dealing with 2 N and 3 N systems.
- The results for the deuteron, t-matrix and 3 N bound state have been verified and published in:
- Phys. Rev. C 813 (2010)
- Few-Body Systems 2012 (53 237-252)
- Few-Body Systems 2012 (1-20)
- Current work is focused on compiling a collection of FORTRAN codes, Mathematica notebooks and packages that can, together with a comprehensive description (aka phd thesis), be used by anyone to reconstruct 2 N and 3 N calculations.
- Our tools can also be deployed in processes involving EM probes:
- Deuteron Disintegration in Three Dimensions,Few-Body Systems 2012
- We start emploing our three dimensional tools to study the decay of the muonic atom in $\mu^{-}+d \rightarrow \nu_{\mu}+n+n$ and other electro-weak processes.

