Study of the Λ(1405) resonance through its neutral and charged decay channels by AMADEUS @ DAΦNE

A. Scordo on behalf of the AMADEUS collaboration

22° European Conference on Few Body Problems in Physics Krakow, Poland, 9-13 September 2013 Investigation of K⁻ interactions on light nuclei (H, ⁴He, ⁸Be, ¹²C)

Reactions:

 K^- 'p' $\rightarrow \Sigma^0 \pi^0$ (non resonant) OR K^- 'p' $\rightarrow \Lambda(1405) \rightarrow \Sigma^0 \pi^0$ (resonant)

 $K^-'p' \rightarrow \Sigma^+\pi^-$ (non resonant) OR $K^-'p' \rightarrow \Lambda(1405)/\Sigma(1385) \rightarrow \Sigma^+\pi^-$ (resonant)

 K^- 'p' $\rightarrow \Lambda \pi^0$ (non resonant) OR K^- 'p' $\rightarrow \Sigma$ (1385) $\rightarrow \Lambda \pi^0$ (resonant)

'p', 'n' BOUND nucleons

AT-REST (K⁻ absorbed from atomic orbit) or IN-FLIGHT

Scientific case: $\Lambda(1405)$

Λ(1405): (m, Γ) = (1405.1^{+1.3}_{-1.0}, 50 ± 2) MeV, I = 0, S = -1, J^p = 1/2-Status: ****, strong decay into $\Sigma\pi$

Its nature is being a puzzle for decades:

- 1) three quark state: expected mass ~ 1700 MeV
- 2) penta quark: more unobserved excited baryons
- 3) unstable KN bound state

4) two poles:
$$(z1 = 1424^{+7}_{-23} - i 26^{+3}_{-14} ; z2 = 1381^{+18}_{-6} - i 81^{+19}_{-8})$$
 MeV

mainly coupled to KN

 $\frac{d\sigma(\Sigma^0 \pi^0)}{dM} \propto \frac{1}{3} \left| T^0 \right|^2$

mainly coupled to $\Sigma \pi \rightarrow$ line-shape depends on production mechanism

Line-shape also depends on the decay channel

$$\frac{d\sigma(\Sigma^{-}\pi^{+})}{dM} \propto \frac{1}{3} \left|T^{0}\right|^{2} + \frac{1}{2} \left|T^{1}\right|^{2} + \frac{2}{\sqrt{6}} Re(T^{0}T^{1*})$$

$$\frac{d\sigma(\Sigma^+\pi^-)}{dM} \propto \frac{1}{3} \left|T^0\right|^2 + \frac{1}{2} \left|T^1\right|^2 - \frac{2}{\sqrt{6}} Re(T^0 T^{1*})$$

Pure I=0 (free from $\Sigma(1385)$ background)

Scientific case: Λ(1405)

- 1) $m_{\pi\Sigma}$ spectra always cut at the at-rest limit (P_{κ}^{\sim} keV)
- 2) $(\Sigma^{\pm}\pi^{\pm})$ spectra have $\Sigma(1385)$ contribution
- 3) The $\Sigma^0 \pi^0$ spectrum was observed in only 3 experiments ... with different line-shapes !

D. Riley, et al. Phys. Rev. D11 (1975) 3065 Esmaili et el., Phys.Lett. B686 (2010) 23-28

Fig. 6. Detailed differences in $M_{\Sigma\pi}$ spectra among the Hyodo–Weise prediction and the present model predictions.

I. Zychor et al., Phys. Lett. B 660 (2008) 167

ENTRIES / 10 MeV/c

K. Moriya, et al., (Clas Collaboration) Phys. Rev. C 87, 035206 (2013)

Magas et al. PRL 95, 052301 (2005) 034605 S. Prakhov, et al., Phys. Rev. C70 (2004)

The DAONE accelerator

 $e^+ e^-$ at 510 MeV -> Φ at-rest

 Φ resonance decays at 49.2 % in K⁺ K⁻ back to back pair

Monochromatic beam of low momentum K⁻ (p_k = 127 MeV/c)

AMADEUS experiment

The AMADEUS experiment

Target: A gaseous He target for a first phase of study

First 4π fully dedicated setup!

Low-energy K⁻ hadronic interactions studies with KLOE 2002-2005 data

MC simulations show that :

- ~ 0.1 of K⁻ stopped in the DC gas (90% He, 10% C_4H_{10})
- ~ 2% of K⁻ stopped in the DC wall (750 mm c. f. , 150 mm Al foil).

Possibility to use KLOE materials as an active target

Advantage:

unprecedent resolution : $\sigma_p/p \sim 0.4$ MeV/c 4π -geometry with $\sim 96\%$ acceptance Calorimeter optimized for γ : $\sigma_m \sim 18$ MeV/c² Vertex position resolution ~ 1 mm (in DC)

Disadvantage:

Non dedicated target \rightarrow different nuclei contamination \rightarrow complex interpretation .. but \rightarrow new features .. K⁻ in flight reactions.

AMADEUS step-0: Pure Carbon target inside KLOE (2012)

Dedicated run in november/december 2012 with a Carbon target 4/6 mm thickness

Advantages:

gain in statistics (~90 pb⁻¹; analyzed 37 pb⁻¹, x1.5 statistics)

K⁻ absorptions occur in Carbon at-rest.

2005 data: at-rest + in-flight events 2012 data: ONLY at-rest events

Particle identification in KLOE: p, π^- , π^0

 π^0 reconstructed minimizing the quantity:

$$\chi^{2} = \frac{(t_{\gamma 1} - t_{\gamma 2})^{2}}{\sigma_{t_{12}}^{2}} = \frac{((t_{cl1} - \frac{|r_{cl1}|}{c}) - (t_{cl2} - \frac{|r_{cl2}|}{c}))^{2}}{\sigma_{t_{12}}^{2}}$$

Obtained resolution: $\sigma_m \sim 18 \text{ MeV/c}^2$

The neutral channel: $\Sigma^0 \pi^0$

 Λ (1405) signal searched by K- interaction with a bound proton in Carbon K- p $\rightarrow \Sigma^0 \pi^0$ detected via: $(\Lambda \gamma)(\gamma \gamma)$ Strategy : K- absorption in the DC entrance wall, mainly 12C with H contamination (epoxy)

 $m_{\pi 0 \Sigma 0}$ resolution $\sigma_m \approx 32 \text{ MeV/c}^2$; $p_{\pi 0 \Sigma 0}$ resolution: $\sigma_p \approx 20 \text{ MeV/c}$.

Negligible ($\Lambda \pi^0$ + internal conversion) background = (3±1) % \rightarrow <u>no I=1 contamination</u>

Invariant mass spectra with mass hypotesis on Σ^0 and π^0 non-resonant misidentification background subtracted (left)

 $\sigma_{\rm m} \approx 17 \ {\rm MeV/c^2}$ (¹²C) $\sigma_{\rm m} \approx 15 \ {\rm MeV/c^2}$ (⁴He)

Similar m($\Sigma^0 \pi^0$) shapes due to the similar kinematical thresholds for ⁴He and ¹²C.

Acceptance corrected $m(\Sigma^0 \pi^0)$ spectra, DC wall (left) DC gas (right)

Acceptance function evaluated in 8 intervals of $p(\Sigma^0 \pi^0)$ (between 0 and 700 MeV/c) 8 intervals of $\theta(\Sigma^0 \pi^0)$ (between 0 and 3.15 rad) 30 intervals of $m(\Sigma^0 \pi^0)$ (between 1300 and 1600 MeV/c2)

$\Sigma^0 \pi^0$ channel : the π^0 momentum

P(π^0) resolution: $\sigma_p \approx 12$ MeV/c

The charged channel: $\Sigma^+\pi^-$

Reaction:

K⁻ 'p' --> Λ (1405)/ Σ (1385) --> $\Sigma^+\pi^-$ --> p π^0 π⁻ RESONANT K⁻ 'p' --> $\Sigma^+\pi^-$ --> p π^0 π⁻ NON RESONANT

Possible badronic backgrounds

rossible nationic backgrounds.									
Interaction	First Output particles	Daughters particles	B. R.	Situation	and the second second	bitrary			$\Lambda\pi^{\circ}$ (IVIC)
K^-p	$\Lambda \pi^0$	$p \pi^- \pi^0$	64 %	Cut on Λ vertices		¥ 0.06	>		Σ⁺π⁻ (MC)
		$n \pi^0 \pi^0$	36 %	No $p\pi^-$ vertex	1000	0.05]]	
K^-p	$\Sigma^+ \pi^-$	$p \pi^0 \pi^-$	52 %	SIGNAL		0.04			
		$n\pi^+\pi^-$	48~%	No $p\pi^-$ vertex				} }	
K^-p	$\Sigma^0 \pi^0$	$\Lambda(p\pi^-) \ \gamma \ \pi^0$	64 %	Cut on A vertices		0.03		/ /	
		$\Lambda(n\pi^0)\gamma\pi^0$	36 %	No $p\pi^-$ vertex		0.02		٦, L	
K^-p	$\Sigma^- \pi^+$	$n \pi^- \pi^+$	100~%	No $p\pi^-$ vertex		0.01		Ζ.	
K^-p	Λ	$p \pi^-$	64 %	No $p\pi^0$ vertex		Q.E			
		$n \pi^0$	36 %	No $p\pi^-$ vertex		50	60 70 80	prot	o 120 130 140 15 on - pion CM momentum (MeV/c)
K^-p	Σ^0	$\Lambda(p\pi^-)\gamma$	64 %	No π^0		iti E			
		$\Lambda(n\pi^0) \gamma$	36 %	No $p\pi^-$ vertex	1.0			1	$\Sigma^0\pi^0$ (MC)
K^-n	$\Lambda \pi^-$	$p \pi^- \pi^-$	64 %	No π^0		Arbitr			$\Sigma^+\pi^-$ (MC)
		$n \pi^0 \pi^-$	36~%	No $p\pi^-$ vertex		0.05		7	
K^-n	$\Sigma^0 \pi^-$	$\Lambda(p\pi^-)\gamma\pi^-$	64~%	No π^0		0.04	Dejected	ſ	
		$\Lambda(n\pi^0)\gamma\pi^-$	36~%	No $p\pi^-$ vertex			Rejected	ا کر	
K^-n	$\Sigma^- \pi^0$	$n \pi^- \pi^0$	100~%	No $p\pi^-$ vertex		0.03	events		
K^-n	Σ^{-}	$n \pi^-$	100~%	No $p\pi^-$ vertex		0.02			
								1	
Residual background contamination:								۲ ۲	

60

70

80

90

100

110 120 130 140 150 proton - pion CM momentum (MeV/c)

150

 $\Sigma^0 \pi^0 = 1.1 \pm 0.3 \%$ $\Lambda \pi^0 = 0.4 \pm 0.1 \%$

 Λ Momentum (MeV/c)

A K⁻ H contribution of \sim 10% is found

In-flight components are clearly evidenced by the excellent π^- resolution

Complete understanding of different nuclear targets in different KLOE materials can be obtained from MC simulations

$\Sigma^+ \pi^-$ channel : DC wall and Carbon target

$\Sigma^+ \pi^-$ channel : corrected spectra in Carbon

Spectra have been corrected with an acceptance function obtained including both at-rest and in-flight MC simulations

Corrected spectra are normalized to 1

NO efficiency correction is included

$\Sigma^{-}\pi^{+}$ and $\Lambda^{-->n\pi^{0}}$: the opening neutral channels

Completely neutral channel: $\Lambda \rightarrow n \pi^0$

Possibility to detect neutrons!

Perspective: $\Sigma^{-}\pi^{+} \rightarrow (n\pi^{-})\pi^{+}$

Conclusions...

- AMADEUS provides a unique opportunity for $\Lambda(1405)$ investigation
- Very promising results have been already obtained with the KLOE 2005 data
- First successful attempt to reconstruct neutrons => completely neutral channel
- Possibility to study In-flight and at-rest reactions individually

... and perspectives

- MC simulations for all the possible materials and acceptance correction
- MC simulations for the carbon target data
- MC simulations for resonant / non resonant component identification
- Investigation of the Σ/Λ internal conversion effect (nucelar fragmentation?)
- Global fit of the data with all the possible components
- AMADEUS experiment with dedicated targets

Thanks for your attention

Spare slides

Studied channel

Since the Σ^+ almost immediately decays, p and π^- are associated to the same vertex

1) p π^- vertex reconstruction

A cut value is chosen via an estimation of the S/B value in the XY vertex position plot.

For each event, the best 4 $p-\pi^{-1}$ couples are selected using a procedure searching for the point of minimum distance between the tracks (PCA).

Vertex radial position

2) π^0 reconstruction

For each p π^- couple, the best 4 π^0 are searched looking for 2 photons in time from the PCA and minimizing a mass χ^2 .

3) Σ^+ reconstruction

For each possible $p-\pi^0$ couple, the invariant mass is reconstructed and a mass χ^2 is calculated

4) Final triplets

For each event, the final (p $\pi^- \pi^0$) triplet is selected minimizing the quantity:

$$\chi^{2} = \sqrt{(\chi^{2}_{t}(\pi^{0}))^{2} + (\chi^{2}_{m}(\pi^{0}))^{2} + (\chi^{2}_{m}(\Sigma^{+}))^{2}}$$

5) Excluding A1116

Interaction	First Output particles	Daughters particles	B. R.	Situation
K^-p	$\Lambda\pi^0$	$p \pi^- \pi^0$	64 %	Cut on Λ vertices
		$n\pi^0\pi^0$	36 %	No $p\pi^-$ vertex
K^-p	$\Sigma^+ \pi^-$	$p \pi^0 \pi^-$	52 %	SIGNAL
		$n \pi^+ \pi^-$	48 %	No $p\pi^-$ vertex
K^-p	$\Sigma^0 \pi^0$	$\Lambda(p\pi^-) \gamma \pi^0$	64 %	Cut on Λ vertices
		$\Lambda(n\pi^0)\gamma\pi^0$	36 %	No $p\pi^-$ vertex
K^-p	$\Sigma^{-}\pi^{+}$	$n \pi^- \pi^+$	100~%	No $p\pi^-$ vertex
K^-p	Λ	$p \pi^-$	64 %	No $p\pi^0$ vertex
		$n \pi^0$	36 %	No $p\pi^-$ vertex
K^-p	Σ^0	$\Lambda(p\pi^-)\gamma$	$64 \ \%$	No π^0
		$\Lambda(n\pi^0) \gamma$	36 %	No $p\pi^-$ vertex
K^-n	$\Lambda \pi^-$	$p \pi^- \pi^-$	64 %	No π^0
		$n \pi^0 \pi^-$	36 %	No $p\pi^-$ vertex
K^-n	$\Sigma^0 \pi^-$	$\Lambda(p\pi^-)\gamma\pi^-$	64 %	No π^0
		$\Lambda(n\pi^0)\gamma\pi^-$	36~%	No $p\pi^-$ vertex
K^-n	$\Sigma^- \pi^0$	$n \pi^- \pi^0$	100~%	No $p\pi^-$ vertex
K^-n	Σ^{-}	$n \pi^-$	100~%	No $p\pi^-$ vertex

Principal hadronic background sources can be rejected setting a cut on the $p-\pi^-$ CM momentum; the cut value is obtained from MC simulations.

A possible background: Σ - Λ Internal conversion

Possible background sources could be reactions like

Internal conversion ratios

Comparison with K⁻ absorption in emulsion

Fit of $\Sigma^0 \pi^0$ spectrum in C

 K^-

8 component fit, simultaneously $m_{\Sigma 0 \pi 0}$ & $p_{\Sigma 0 \pi 0}$:

 Breit-Wigner resonant component K⁻C at-rest/in-flight. (M,Γ) = (140) 1430, 5 ÷ 52)

Non resonant Σ⁰π⁰ K⁻ H production at-rest/in-flight

Non resonant Σ⁰π⁰ K⁻ C production at-rest/in-flight

Λπ⁰ background (Σ(1385) + I.C.)

non resonant misidentification (n.r.m.) background

K⁻¹²C → $\Sigma^0 \pi^0$ + ¹¹B (Boron spectator, left in ground state)

secondary interactions not taken into account.

