Hadron Structure Within the Point Form of Relativistic Quantum Mechanics

W. Schweiger

Karl-Franzens-Universität Graz

Collaborators:

E. P. Biernat, M. Gomez-Rocha, W. H. Klink, O. Senekowitsch

(Sep. 9th, 2013, EFB22, Cracow)

Overview

- Introduction
- Framework: relativistic point-form quantum mechanics
- Electromagnetic structure of heavy-light mesons
 - Multichannel formulation of electron-meson scattering
 - Extraction of meson current and form factors
 - Cluster properties
- Weak form factors of heavy-light mesons
 - Space-like region
 - Time-like region semileptonic weak decays
 - Heavy-quark symmetry
- Z-graph contributions in semileptonic weak decays

Summary and outlook

Introduction

Aim:

Derivation of electroweak currents and form factors of mesons and baryons within constituent-quark models

 Proper relativistic framework crucial for reasonable description of hadron structure (even at small momentum transfers)

Our approach:

- Point form of relativistic quantum mechanics
- Bakamjian-Thomas construction
 ⇒ Poincaré invariance of interacting systems
- Calculate 1-γ-exchange (1-W-exchange) amplitude for the electromagnetic (weak) process in which form factors are measured
- ► Extract the electromagnetic (weak) hadron current from the 1-γ-exchange (1-*W*-exchange) amplitude
- Analyze the covariant structure of the current and identify the form factors

Framework: relativistic point-form quantum mechanics

Relativistic quantum mechanics

- Different forms of relativistic quantum mechanics (IF, FF, PF)

Point form of relativistic quantum mechanics

- Translation generators P^{μ} ... interaction dependent
- Lorentz generators $\vec{J}, \vec{K} \dots$ interaction free
- ⇒ boosts and addition of angular momenta simple, covariance properties easy to check

Bakamjian-Thomas construction (for PF)

B. Bakamjian and L.H. Thomas, Phys. Rev. 92 (1953) 1300 Recipe to obtain Poincaré-invariant interacting models

$$P^{\mu}=MV^{\mu}_{\mathrm{free}}=(M_{\mathrm{free}}+M_{\mathrm{int}})V^{\mu}_{\mathrm{free}}$$

 \implies Poincaré invariance if M_{int} is a Lorentz scalar and $[M_{int}, \vec{V}_{free}] = 0$

Coupled-channel formulation of e-M scattering

Mass operator:

$$\left(egin{array}{ccc} M_{eQar{q}}^{
m conf} & K_{\gamma} \ K_{\gamma}^{\dagger} & M_{eQar{q}\gamma}^{
m conf} \end{array}
ight)$$

 \blacktriangleright Coupled-channel formulation accounts for dynamical $\gamma\text{-exchange}$

- $M_{eQ\bar{q}(\gamma)}^{conf}$... relativistic kinetic energies + instantaneous confinement
- $K_{\gamma}^{(\dagger)}$... vertex for absorption (emission) of γ by e, \bar{q}, Q
- Operators represented in a velocity-state basis $|\vec{V}; \vec{k}_i, \mu_i\rangle$, $\sum_i \vec{k}_i = 0$
 - Overall 4-velocity \vec{V} factors out in Bakamjian-Thomas framework
 - $K_{\gamma}^{(\dagger)}$ related to usual QED interaction Lagrangean:

$$\begin{split} \langle \vec{V}'; \vec{k}'_{e}, \mu'_{e}; \vec{k}'_{Q}, \mu'_{Q}; \vec{k}_{\bar{q}}, \mu'_{\bar{q}}; \vec{k}'_{\gamma}, \mu'_{\gamma} | \hat{k}^{\dagger}_{\gamma} | \vec{V}; \vec{k}_{e}, \mu_{e}; \vec{k}_{Q}, \mu_{Q}; \vec{k}_{\bar{q}}, \mu_{\bar{q}} \rangle \\ &= N \, v_{0} \, \delta^{3} (\vec{V}' - \vec{V}) \, \langle \vec{k}'_{e}, \mu'_{e}; \dots | \mathcal{L}^{\text{QED}}_{\text{int}}(0) | \vec{k}_{e}, \mu_{e}; \dots \rangle \end{split}$$

Invariant 1- γ exchange amplitude

BUT

$$\tilde{J}^{\mu}(\vec{p}_{M}^{\prime},\sigma_{M}^{\prime};\vec{p}_{M},\sigma_{M}) := B_{c}(\vec{V})^{\mu}{}_{\rho} \tilde{J}^{\rho}(\vec{k}_{M}^{\prime},\mu_{M}^{\prime};\vec{k}_{M},\mu_{M}) D^{j_{M}*}_{\mu_{M}^{\prime}\sigma_{M}^{\prime}} D^{j_{M}}_{\mu_{M}\sigma_{M}}$$

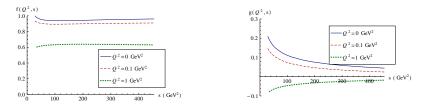
transforms like a 4-vector

Covariant structure of \tilde{J}^{μ} for pseudoscalar mesons

 $\tilde{J}^{\mu}(\vec{p}'_{M};\vec{p}_{M}) = (p_{M} + p'_{M})^{\mu} f(Q^{2},s) + (p_{e} + p'_{e})^{\mu} g(Q^{2},s)$

- \tilde{J}^{μ} is a conserved current
- But complete covariant decomposition requires electron 4-momenta
- Form factors depend (in addition to Q^2) also on Mandelstam s

Form factors of B meson (s-dependence)



Harmonic-oscillator model with parameters (a = 0.55 GeV, $m_b = 4.8$ GeV, $m_{u,d} = 0.25$ GeV) from FF calculation: H.-Y. Cheng et al., Phys. Rev. D55 (1997) 1559

Spurious dependencies of \tilde{J}^{μ} on electron momenta

- Reason: wrong cluster properties inherent in the BT-construction; could be cured by means of "packing operators", but practically these are hard to construct
- Strategy: extract form factors at large s, where spurious dependencies vanish

 $\tilde{J}^{\mu}(\vec{p}'_{M};\vec{p}_{M}) \stackrel{s \to \infty}{\longrightarrow} J^{\mu}(\vec{p}'_{M};\vec{p}_{M}) = (p_{M} + p'_{M})^{\mu} F(Q^{2})$

- Simple analytical expression for $F(Q^2)$
- Agreement with front-form calculation in $q^+ = 0$ frame
- s → ∞ is extreme case corresponding to infinite-momentum frame; physical advantage: Z-graphs suppressed
- Other extreme case: $s = s_{\min}(Q^2)$ corresponds to Breit frame;

 $(p_M + p'_M)^{\mu}$ and $(p_e + p'_e)^{\mu}$ become proportional $\implies f(Q^2, s_{\min})$ and $g(Q^2, s_{\min})$ cannot be separated \implies only 1 effective form factor $F_{\text{eff}}(Q^2) \neq F(Q^2)$

Electromagnetic form factors of other hadrons $(q^2 \le 0)$

π

E.P. Biernat et al., Phys. Rev. C 79 (2009) 055203

ρ

E.P. Biernat, Ph.D. thesis, KFU Graz (2011) [arXiv:nucl-th/1110.3180]

- $s \to \infty$ limit does not remove all spurious covariants
- Situation analogous to covariant front-form approach with its spurious dependencies on ω^μ (specifies orientation of the light front)
 J. Carbonell et al., Phys. Rep. 300 (1998) 215
- Numerical results agree with those of covariant front-form approach

Nucleon

See talk by Daniel Kupelwieser

Deuteron

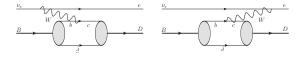
E.P. Biernat, Ph.D. thesis, KFU Graz (2011) [arXiv:nucl-th/1110.3180]

M. Gómez-Rocha, Ph.D. thesis, KFU Graz (2012) [arXiv:hep-ph/1306.1248]

Weak $B \rightarrow D$ transition form factors $(q^2 \leq 0)$

 $\nu_e \ B^0 \rightarrow e \ D^+$ can be treated analogously 4 channels: $|\nu_e, b, \bar{d} \rangle$, $|\nu_e, c, \bar{d}, W \rangle$, $|e, c, \bar{d} \rangle$, $|e, b, \bar{d}, W \rangle$

Invariant 1-W exchange amplitude



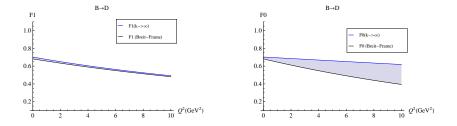
Covariant structure of $\widetilde{J}^{\mu}_{B
ightarrow D}$

$$ilde{J}^{\mu}_{B
ightarrow D}(ec{p}'_D;ec{p}_B) = \left((p_B+p'_D)\,-\,rac{m_B^2-m_D^2}{q^2}\,q
ight)^{\mu}f_1(q^2,m{s}) + rac{m_B^2-m_D^2}{q^2}\,q^{\mu}f_0(q^2,m{s})$$

• $\tilde{J}^{\mu}_{B \to D}$ can be expressed in terms of physical covariants only • Transition form factors are still *s*-dependent

Weak $B \rightarrow D$ transition form factors $(q^2 \leq 0)$

Comparison $s \to \infty$ (IMF) vs. $s \to s_{\min}(Q^2)$ (BF)



Harmonic-oscillator model with parameters ($a_B = 0.55$ GeV, $a_D = 0.46$ GeV, $m_b = 4.8$ GeV, $m_c = 1.6$ GeV, $m_{u,d} = 0.25$ GeV) from FF calculation: H.-Y. Cheng et al., Phys. Rev. D55 (1997) 1559

Weak $B \rightarrow D$ decay form factors ($q^2 \ge 0$)

 $B^0 \rightarrow e \ \bar{\nu}_e \ D^+$ can be treated analogously 4 channels: $|b, \bar{d}\rangle$, $|c, \bar{d}, W\rangle$, $|c, \bar{d}, e, \nu_e\rangle$, $|b, \bar{d}, W, e, \nu_e\rangle$

Invariant 1-W exchange amplitude

Covariant structure of $J^{\mu}_{B \rightarrow D}$

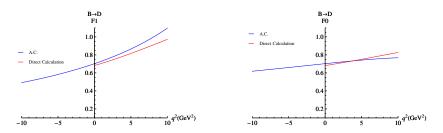
$$J^{\mu}_{B\to D}(\vec{p}'_D;\vec{p}_B) = \left((p_B + p'_D) - \frac{m_B^2 - m_D^2}{q^2} q \right)^{\mu} F_1(q^2) + \frac{m_B^2 - m_D^2}{q^2} q^{\mu} F_0(q^2)$$

- ► $J^{\mu}_{B \to D}$ can be expressed in terms of physical covariants only
- ▶ No s-dependence of transition form factors, since $s = m_B^2$ fixed
- Z-graph contributions could play a role for finite s (cf. study of triangle diagram in FF: H.-M. Choi and C.-R. Ji, Nucl.Phys. A679 (2001) 735)

Weak $B \rightarrow D$ transition form factors (q^2 arbitrary)

Estimate of Z-graph contribution in $B \rightarrow D$ decay

- ► Take analytical results for space-like B → D transition form factors as calculated for s → ∞ (Z-graphs suppressed) and continue them analytically to time-like momentum transfers (Q → iQ)
- ► Compare with direct decay calculation at $s = m_B^2$ where Z-graphs are not taken into account



Heavy-quark symmetry

Heavy-quark limit (h.q.l.)

- Consider form factor dependence on $\mathbf{v} \cdot \mathbf{v}'$ instead of $q^2 = m_M^2 + m_{M'}^2 2m_M m_{M'} \mathbf{v} \cdot \mathbf{v}'$
- ▶ Heavy-quark limit: $m_{Q^{(\prime)}} = m_{M^{(\prime)}} \to \infty$ with $v \cdot v'$ fixed and $m_q/m_{Q^{(\prime)}} = 0$

Heavy-quark symmetry

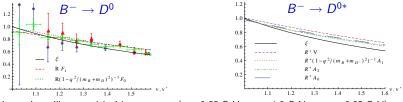
satisfied by our approach

▶ h.q.l. of (the 4) $B \rightarrow D^*$ transition form factors gives the same $\xi^{I.W.}$

Z-graphs suppressed in h.q.l.

Heavy-quark symmetry

Heavy-quark limit versus finite-mass case



Harmonic-oscillator model with parameters (a = 0.55 GeV, $m_b = 4.8$ GeV, $m_{u,d} = 0.25$ GeV) from FF calculation: H.-Y. Cheng et al., Phys. Rev. D55 (1997) 1559; data form Belle (dots), CLEO (triangles), BABAR (crosses)

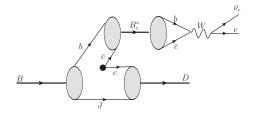
Slope of Isgur-Wise function at zero recoil $v \cdot v' = 1$

$$\rho_D^2 := -\frac{F_1'(v \cdot v'=1)}{F_1(v \cdot v'=1)}$$

Experiment: 1.18 ± 0.06 (HFAG) heavy-quark limit: 1.24physical masses (decay): 0.59physical masses (analyt.cont.): ≈ 1.05

イロト 不得 トイヨト イヨト 三日

Model for Z-graph contribution to $B \rightarrow D$ decay



▶ cc̄-creation out of the vacuum by means of ³P₀ - model cf. J. Segovia et al., Phys. Lett. B715 (2012) 322

Instantaneous confinement

⇒ only hadrons propagate in intermediate states ⇒ reformulation as hadronic process: $B \rightarrow B_c^* D$

 $\Rightarrow B_c^*BD$ - and $B_c^*e\nu_e$ -vertices have to be calculated on quark level

e $\bar{\nu}_e$

Summary and outlook

- I have presented a point-form approach to electroweak form factors of hadrons described via constituent-quark models
- The physical process in which the form factors are measured are treated in a Poincaré-invariant way
- ► Electromagnetic (weak) hadron currents can be uniquely identified from the 1-γ (1-W) exchange amplitude
- Currents and form factors (in space-like momentum-transfer region) exhibit a spurious dependence on lepton momenta, which can be traced back to wrong cluster properties => eliminated by taking s large (and neglecting spurious covariants)
- For heavy-light mesons the correct heavy-quark-symmetry relations between the form factors come out in the h.q.l.
- ▶ Estimate of Z-graph contribution to $B \rightarrow D$ decays indicates that it is not negligible

► Model calculation of this contribution, based on ³P₀ quark-pair creation is just in progress