Physics with polarized light ions at an Electron-Ion Collider (EIC)

Pawel Nadel-Turonski

Jefferson Lab

EFB22, Krakow, Poland, September 12, 2013

Physics highlights of an Electron-Ion Collider

Polarized light ions

Accelerators and detectors

Physics highlights from the EIC program

- 3D structure of nucleons and nuclei is not trivial
 - Confinement

How do gluons and quarks bind into 3D hadrons?

- ➢ Gluon dynamics plays a large role in proton spin
 - Spin = intrinsic (parton spin) + motion (orbital angular momentum)

Why do quarks contribute so little (~30%) to proton spin?

➢ Gluons in nuclei

EIC stage I measurement

Does the gluon density saturate at small x?

EIC stage II measurement

Imaging in coordinate and momentum space

<u>GPDs</u>

2+1 D picture in impact-parameter space

<u>TMDs</u>

- Accessed through *exclusive* processes
- Ji sum rule for nucleon spin

2+1 D picture in momentum space

- Accessed through Semi-Inclusive DIS
- OAM through spin-orbit correlations?

Imaging in coordinate and momentum space

<u>GPDs</u>

<u>TMDs</u>

2+1 D picture in **impact-parameter space**

Transverse gluon distribution from J/ψ production

2+1 D picture in momentum space

The spin of the proton

The number $\frac{1}{2}$ turns out to be a complicated interplay between the intrinsic properties and interactions of quarks and gluons

Two complementary approaches to resolve proton spin puzzle

Measure ΔG - gluon polarization Measure TMD and GPDs - orbital motion

GPDs and angular momentum

- DVCS on a transversely polarized target is sensitive to the GPD E
 - *GPD H* can be measured through the beam spin asymmetry
 - Opens up opportunity to study spin-orbit correlations:

$$J^{q} = \frac{1}{2} \int_{-1}^{+1} dx \, x \Big[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \Big]$$

Longitudinal spin – ΔG (gluon polarization)

- EIC stage I will greatly improve our understanding of ΔG
 - Stage II will further reduce the uncertainty

Opportunities with polarized light ions

Experiment: requires excellent forward detection and spectator tagging **Theory**: combines high-momentum-transfer processes and low-energy nuclear structure

Partonic structure of the neutron (including spin)

- Quark flavor decomposition of the nucleon spin
- Extraction of flavor non-singlet sea quark distributions
 - Sensitive to non-perturbative QCD interactions

The bound nucleon in QCD

- Quark/gluon origin of nuclear force
- Control the effects of final-state interactions

Collective quark/gluon fields

- Coherent scattering probes the quark/gluon field of the entire nucleus
 - Similar information comes from diffractive scattering on deuterium
- Tensor-polarized structure function of deuterium is zero in single-nucleon scattering and precisely identifies the QCD double-scattering contribution.
 - Provides insight into the onset of gluon saturation at higher energies

Nuclear structure in high-energy processes [Summary by C. Weiss]

"Conditional" LF spectral function • Low-energy nuclear structure affects high-energy $eA/\gamma A$ scattering processes

Factorization in long–distance nuclear structure $\sim R_A$ and short–distance nucleon structure $\sim 1/Q$

Light–front formulation essential: Momentum conservation, sum rules

• Inclusive deep-inelastic scattering on nuclei

Nuclear structure functions: EMC effect, antishadowing, shadowing

• Spectator tagging with light nuclei ²H, ³He Becomes feasible with medium-energy Electron-Ion Collider!

Neutron structure functions: Spin/flavor decomposition of parton densities

Bound nucleon structure: Off-shellness controlled by kinematics, comparison of bound and free proton

Nuclear polarization as additional handle: Spin filtering, tensor polarized ²H for multiple scattering beyond IA

Needs theory input: Conditional spectral functions, final-state interactions New applications of low-energy nuclear structure techniques. Expect developments in next years!

EIC – consensus on global EIC requirements

The EIC project is pursued jointly by BNL and JLab, and both labs work towards implementing a common set of goals

- Polarized electron, nucleon, and light ion beams
 - Electron and nucleon polarization > 70%
 - Transverse polarization at least for nucleons
- Ions from hydrogen to A > 200
- Luminosity reaching 10³⁴ cm⁻²s⁻¹
- Stage I energy: $\sqrt{s} = 20 70$ GeV (variable)
- Stage II energy: \sqrt{s} up to about 150 GeV

From base EIC requirements in the INT report

(MEIC)

(EIC)

EIC staging

Already the first stage of an EIC gives access to sea quarks and gluons

Need polarization and good acceptance to detect spectators & fragments

EIC – staging at BNL and JLab

eRHIC @ BNL	<u>Stage I</u>	<u>Stage II</u>
eRHIC detector	$\sqrt{s} = 34 - 71 \text{ GeV}$ $E_e = 3 - 5 (10 ?) \text{ GeV}$ $E_p = 100 - 255 \text{ GeV}$ $E_{Pb} = up \text{ to } 100 \text{ GeV/A}$	$\sqrt{s} = up \text{ to } \sim 180 \text{ GeV}$ $E_e = up \text{ to } \sim 30 \text{ GeV}$ $E_p = up \text{ to } 275 \text{ GeV}$ $E_{Pb} = up \text{ to } 110 \text{ GeV/A}$
MEIC / EIC @ JLab	$\sqrt{s} = 13 - 70 \text{ GeV}$ $E_e = 3 - 12 \text{ GeV}$ $E_p = 15 - 100 \text{ GeV}$ $E_{Pb} = \text{up to 40 GeV/A}$	$\sqrt{s} = up \text{ to } \sim 140 \text{ GeV}$ $E_e = up \text{ to } 20 \text{ GeV}$ $E_p = up \text{ to at least } 250 \text{ GeV}$ $E_{Pb} = up \text{ to at least } 100 \text{ GeV/A}$
	(MEIC)	(EIC)

eRHIC at Brookhaven Lab (BNL), NY

BNL: 1st Detector Design Concept

-1<η<1: DIRC or proximity focusing Aerogel-RICH
1<|η|<3: RICH
Lepton-ID:
-3 <η< 3: e/p

1<|η|<3: in addition Hcal response & γ suppression via tracking
|η|>3: ECal+Hcal response & γ suppression via tracking
-5<η<5: Tracking (TPC+GEM+MAPS)

E.C. Aschenauer DIS-2013, Marseille

JLab 12 GeV upgrade – probing the valence quarks

The EIC at Jefferson Lab (JLab), VA

• The MEIC has a circumference similar to CEBAF (1.4 km)

MEIC – a figure-8 ring-ring collider

Baseline design

- Two high-luminosity, full-acceptance detectors
 - Simultaneous use (total beam-beam tune shift < 0.03)
- Highly polarized e, p, and light ion beams
 - Figure-8 ring provides exceptional spin control
 - Vector- and tensor polarized deuterium
- New ion complex: source, linac, boosters
 - Ions up to and above A=200 (Au, Pb)
- 12 GeV CEBAF linac used as full-energy injector
 - Possible to run in parallel with fixed-target experiments

Minimized technical risk and R&D challenges

- Regular electron cooling
- Regular polarized electron source
- No multi-pass ERL needed
- No space-charge compensation assumed

MEIC – ion polarization in figure-8 ring

- Science program demands highly polarized (>70%) light ion beams (p, D, ³He, Li, ...)
- · Figure-8 shape used for all ion booster and collider rings
 - Spin precession in one arc is canceled by the other arc
 - No preferred periodic spin direction
 - Energy-independent spin tune
 - Simplified polarization control and preservation for all ion species
 - Needs only small magnetic fields (instead of Siberian Snakes) to control polarization at Ips
 - The electron ring has a figure-8 shape because it shares a tunnel with the ion ring
- Figure-8 ring is the only practical way to accelerate *polarized deuterons*

The JLab full-acceptance detector concept

No other magnets or apertures between IP and FP!

Hadron detection between endcap and ion quads

- Moves spot of poor resolution along solenoid axis into the periphery
- Minimizes shadow from electron FFQs
- Dipole before quadrupoles further improves resolution in the few-degree range
- Low-gradient quadrupoles allow large apertures for detection of *all* ion fragments
 - Peak field = quad gradient x aperture radius

Ultra-forward hadron detection – requirements

1. Good acceptance for ion fragments (rigidity different from beam)

- Large downstream magnet apertures
- Small downstream magnet gradients (realistic peak fields)
- Roman pots not needed

2. Good acceptance for recoil baryons (rigidity similar to beam)

- Small beam size at second focus (to get close to the beam)
- Large dispersion (to separate scattered particles from the beam)
- Roman pots important

3. Good momentum- and angular resolution

- Large dispersion (*e.g.*, 60 mrad bending dipole)
- Long, instrumented magnet-free drift space

4. Sufficient separation between beam lines (~1 m)

Tracking of ultra-forward charged particles

- Large apertures provide full acceptance for *all* nuclear fragments
 - The MEIC IR design combines excellent performance and low technical risk

Target fragment acceptance in the ion quadrupoles

Forward acceptance vs.magnetic rigidity

magnetic rigidity

relative to beam

The angle is the original scattering angle at the IP

∆p/p

Ultra-forward hadron detection – summary

- Neutron detection in a 25 mrad cone down to zero degrees
 - Excellent acceptance for *all ion fragments*

EIC timeline

Assumes endorsement for an EIC at the next NSAC Long Range Plan Assumes relevant accelerator R&D for down-select process done around 2016

Summary

The EIC is the next-generation US QCD facility

- JLab or BNL implementations possible
 - Agreement on global parameters
 - Collaboration on detector R&D

The EIC at JLab offers some unique capabilities

- Vector- and tensor polarized deuterium
- Excellent detection of recoil baryons, spectators, and target fragments
 - Full acceptance, high resolution

Exciting opportunities for program with polarized ions

- Combines high-momentum-transfer processes and low-energy nuclear structure
- Important input from few-body community needed!

A unified picture of nucleon structure

□ EIC – 3D imaging of sea and gluons:

♦ TMDs – confined motion in a nucleon (semi-inclusive DIS)

♦ GPDs – Spatial imaging of quarks and gluons (exclusive DIS)

Neutron structure through spectator tagging

JLab CLAS BoNuS data with tagged spectators

- In fixed-target experiments, scattering on *bound neutrons* is complicated
 - Fermi motion, nuclear effects
 - Low-momentum spectators
 - No polarization
- The MEIC is designed from the outset to tag spectators, and all nuclear fragments.

Spectator tagging with polarized deuterium

- Deeply Virtual Compton Scattering (DVCS) on a neutron target
- Tagged, polarized *neutrons* are essential for the GPD program

"If one could tag neutron, it typically leads to larger asymmetries" Z. Kang

 Polarized neutrons are important for probing d-quarks through SIDIS

Quark propagation in matter (hadronization)

Accardi, Dupre

- Broadening of p_T distribution
- Heavy flavors: B, D mesons, J/Ψ ...

Hadron jets at $s > 1000 \text{ GeV}^2$

What happens to the nucleus?

- Jet axis R(2) Jet radius R(1) $p_T^{min}(2)$ $p_T^{min}(1)$
- Fragments hold the key to what happened ,, along the way"
 - R. Dupre, POETIC, Valparaiso, Chile 34

Dual-solenoid-based "ultimate SIDIS" detector

- Inspired by the "4th" detector concept for the ILC ٠
- Novel asymmetric layout for the MEIC ٠
- Iron-free flux return allows more coverage for ٠ endcap detectors providing superior performance
- Easy access to endcap detectors through coil wall ٠ and gap between coils and outer solenoid
- Space for sensors outside of the "line-of-sight" ٠
- Dimensions of inner solenoid follow the new ٠ unified MEIC magnet and IR geometry

Detailed solenoid

design in progress!

184

٠

Central detector can be designed as a package compatible with all solenoid options (dual, CLEO, BaBar)

MEIC – (old) central detector cartoon

r (meters)

Iron-Free Detector (top view)

- MEIC detector is currently being implemented in GEANT4
- Baseline configuration will incorporate as many technologies as possible from the Generic Detector R&D for an EIC program (coordinated by Tom Ludlam. BNL)
 - Already more than \$1 million per year available

36