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• BS approach

E.E. Salpeter and H. Bethe, Phys. Rev. 84, 1232 (1951)

BS approach is a powerful tool
in relativistic few-body physics

and in field theory
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To analyze a relativistic system (like a non-relativistic one)
we need:

Bound state BS amplitudes in Minkowski space –done

Elastic E.M. form factors – done

Scattering state BS amplitudes in Minkowski space
–done

Transition E.M. form factors (bound state → scattering
state) –subject of this talk

Relativistic Faddeev-Yakubovski amplitudes –not yet
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• Why Minkowsky space?
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E.m. vertex in terms of the BS amplitude.
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Wick rotation cannot be done in the form factor

integral because of singularities of ΦM vs. k0.
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• Transition form factor

We need the

off-shell BS amplitudes in Minkowski space

(both for bound and scattering states)

to calculate the transition form factor ed → enp.

half-off-shell amplitude,
solution of the BS equation

n

p
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• BS equation
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Scattering state mass: M ≡
√
s = 2

√

m2 + p2s > 2m

Equation determines the off-shell amplitude in Minkowski space.

In c.m.-frame ~P = 0: Fl = Fl(p0, p; ps) depends on

two variables p0, p (for S-wave).

On-mass shell: F on
l = Fl(p0 = 0, p = ps; ps) = F (ps)

– physical amplitude (determines phase shifts).
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Equation contains singularities.

Solution: BS amplitude is also singular.

The main problem is to treat singularities

(analytically or numerically).

To find binding energy, we can make Wick rotation in the BS

equation and calculate BS amplitude in Euclidean space.

But we need it in Minkowski space!
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• Two methods in Minkowski space

Via Nakanishi representation

Direct and accurate treating of singularities
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• Minkowski space solution

for bound states
via Nakanishi representation

K. Kusaka, A.G. Williams, Phys.Rev. D51 (1995) 7026;

V.A. Karmanov, J. Carbonell, Eur. Phys. J. A 27, 1 (2006)

Φ(k, p) =

∫ 1

−1

dz′
∫

∞

0

dγ′
−ig(γ′, z′)

[

γ′ +m2 − 1

4
M2 − k2 − p·k z′ − iǫ

]3
.

Φ(k, p) is singular.
g(γ′, z′) is not singular.

From the BS equation one derives equation for g(γ′, z′).
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• Elastic e.m. form factor

It is analytically expressed via g(γ, z)
and easily calculated.
J. Carbonell, V.A. Karmanov, M. Mangin-Brinet,

Eur. Phys. J. A 39 (2009) 53-60
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Minkowski space calculation - cross-ladder
LFD calculation - cross-ladder

Form factor via Minkowski BS amplitude (solid curve),

and in LFD (dot-dashed curve).
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• Scattering states

via Nakanishi representation

For the scattering states, an analogous formalism (Nakanishi)

was developed in

T. Frederico, G. Salmè, and M. Viviani,

Phys. Rev. D 85 (2012) 036009.

The numerical solution was not yet obtained (as far as I know).

Though, there is no any principle obstacles.

For the present, this approach (Nakanishi) cannot be yet applied

to calculating transition form factor.
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• Another method

to find the bound and scattering states
in Minkowski space

Direct and accurate treating of singularities
V.A. Karmanov, J. Carbonell,

FB20, Fukuoka, Japan, Aug. 2012;

Few-Body Syst., 54, 1509 (2013).

(example of method:
calculating transition form factor, this talk)
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• Scattering state solution

Minkowski space half-off-shell amplitude
found in our work for the first time

Real (left panel) and imaginary (right panel) parts

of the off-shell amplitude F (p0, p; ps).
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• Phase shift
On-shell amplitude – phase shift

Particular case: F on
l = Fl(p0 = 0, p = ps; ps)

Sl = ei2δl = 1 +
2ipsF

on
l

εps
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Phase shift (degrees) calculated via BS equation (solid black)

compared to the non-relativistic results (dashed red).

Coincides with one found via BS 40 years ago: Tjon et al.
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• Transition amplitude

}
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Feynman diagram for the EM form factor.

J̃µ = i

∫

d4k

(2π)4

(pµ + p′µ − 2kµ)Γi

(
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2
p− k, p

)

Γf
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1

2
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)

(k2 −m2 + iǫ)[(p− k)2 −m2 + iǫ][(p′ − k)2 −m2 + iǫ]
,
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• Restoring gauge invariance

q·J̃ 6= 0 → Jµ = J̃µ −
qµ

q2
(q·J̃), q·J = 0

:
Unique decomposition:

Jµ =

[

(pµ + p′µ) +
(M ′2 −M2)

Q2
(p′µ − pµ)

]

F (Q2)

In the frame where p0 = p′
0

(but |~p| 6= |~p′|!):

J0 = 2p0F (Q2)

Calculating J0, we find form factor.
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• Treating pole singularities

F =

∫

. . . d4k

(k2 −m2 + iǫ)[(p− k)2 −m2 + iǫ][(p′ − k)2 −m2 + iǫ]

=

∫

[PV + δ][PV + δ][PV + δ]dk0d
3k

=

∫

(f3 + f2 + f1)dk0d
3k

f3 = PV · PV · PV

f2 = PV · PV · δ

f1 = PV · δ · δ
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• Treating pole singularities in f3

f3 = PV · PV · PV ← 3 propagators = 6 poles

f3 = (f3 − h3) + h3

where

h3(k0) =
g1

k0 − E~k

+
g2

k0 + E~k

+
g3

k0 − p0 − E
~p−~k

+
g4

k0 − p0 + E
~p−~k

+
g5

k0 − p′
0
− E~p′−~k

+
g6

k0 − p′
0
+ E~p′−~k

g1−6 do not depend on k0.

From the condition that (f3 − h3) is not singular we find g1−6.

Then (f3 − h3) is easily integrated numerically,

whereas the singular integral PV
∫

h3dk0 is calculated analytically.
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• Integrating h3

F3,fv(z, k) = PV

∫ L

−L

h3(k0)dk0

= . . . log
L− E~k

L+ E~k

(1)

+ . . . log
L+ E~k

L− E~k

(2)

+ . . . log
L− p0 − E

~p−~k

L+ p0 + E
~p−~k

(3)

+ . . . log
L− p0 + E

~p−~k

L+ p0 − E
~p−~k

(4)

+ . . . log
L− p0 − E~p′−~k

L+ p0 + E~p′−~k

(5)

+ . . . log
L− p0 + E~p′−~k

L+ p0 − E~p′−~k

(6)

log-singularities, can be integrated over d3k numerically.
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• Treating f2 and f1

f2 = PV · PV · δ: is integrated over dk0 by means of
the delta-function. Still needs one subtraction.
Double integral over d3k = 2πk2dkdz is numerical.

f1 = PV · δ · δ: is integrated over dk0 and dz

by means of two the delta-functions.
Does not need any subtraction.
Single integral over dk is numerical.

In this way we find the transition form factor F (Q2)
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• Test via elastic form factor

M ′ = M

(p+p′)νFel(Q
2) = i

∫

d4k

(2π)4
(p+ p′ − 2k)ν

(k2 −m2 + iǫ)

Γ
(

1

2
p− k, p

)

Γ
(

1

2
p′ − k, p′

)

[(p− k)2 −m2 + iǫ][(p′ − k)2 −m2 + iǫ]
,

Put Γ = 1. Use the Feynman parametrization:

1

abc
=

∫

1

0

du

∫

1−u

0

2dv

(au+ bv + c(1− u− v))3

Get:

Fel(Q
2) =

1

16π2

∫

1

0

du

∫

1−u

0

(1− u− v)dv

[m2 − (1− u− v)(u+ v)M2 + uvQ2]
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• Numerical test

Take, for example, m = 1, M = 1.9, Q2 = 10. We find:

Fel(Q
2) = 0.00200374

Exactly the same value is obtained by the method
developed

to calculate the transition form factor!

Form factor is correct if the Bethe-Salpeter amplitudes

Γi, Γf are correct.

The Bethe-Salpeter amplitudes Γi, Γf passed

via multiple tests in our previous work.
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• Transition form factor

Numerical result

Real (blue), imaginary (red) parts and module (black)

of the transition form factor Fin(Q
2).
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• Conclusion

To calculate form factors (elastic and inelastic) we need
BS amplitudes in Minkowski space.

These solutions are found (for bound and scattering
states).

Inelastic form factor (for the transition: bound →
scattering states) is expressed in terms of the initial
(bound state) and final (scattering state) BS amplitudes.

The singularities are properly treated, so that no
problem with numerical calculations.

By this method, the transition form factor is calculated,
the results is found.

Calculations are done for the spineless case, but the
method is applicable to realistic systems.
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Thank you!
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