EFB22, Krakow, Sept. 12, 2013

Universal aspects of neutron halos in light exotic nuclei

Tobias Frederico Instituto Tecnológico de Aeronáutica São José dos Campos – Brazil tobias@ita.br

Light-neutron rich nuclei

C.A. Bertulani, Nuclear Physics in a Nutshell, Princeton University Press, 2007.

TF, Delfino, Tomio, Yamashita, "Universal aspects of light halo nuclei Prog. Part. Nucl. Phys. 67 (2012) 939"

Tanihata, Savajols Kanungo. "Recent experimental progress in nuclear halo structure studies Prog. Part. Nucl. Phys. 68 (2012) 215"

Zinner, Jensen. "Comparing and contrasting nuclei and cold atomic gases". J. Phys. G: Nucl. Part. Phys. 40 (2013) 053101

Two-neutron weakly bound s-wave three-body halo nuclei

Weakly bound quantum systems

$$(E-H_0)\psi=0$$

- Almost everywhere the wf is an eigenstate of H_0 short-range force
- Physics: symmetry, scales and dimension (& mass ratios)

 \rightarrow Universality (model independence)

Generalization: "The few scales of nuclei and nuclear matter" Delfino, TF, Timóteo, Tomio. PLB 634 (2006) 185

- ${}^{1}S_{0}$ nn state $E_{virtual} = -143$ keV (a = -17fm)
- S n-core virtual ($^{10}Li \sim -25 \text{ keV}$) or bound ($^{19}C \sim 500 \text{ keV}$)

Three-boson

Subtle three-body phenomenum in L=0:

Thomas collapse (1935)	Efimov effect (1970))
$r_{o} \rightarrow 0$	$ a \rightarrow \infty$	
Route to collapse?	infinitely many bound	nd states
	condensing at $E=0$	
I homas-E	$ a /r_{o} \rightarrow \infty$	

Adhikari, Delfino, TF, Goldman, Tomio, PRA37 (1988) 3666

One three-body scale is necessary to represent short-range physics !!!! & discrete scaling

Jensen, Riisager, Fedorov, Garrido, RMP76, 215 (2004) Braaten, Hammer Phys. Rep.428, 259 (2006)

Efimov States – Bound and virtual states (3 identical bosons)

Correlations between observables: Jensen, Fedorov, Yamashita, Hammer, Platter, Gattobigio, Kievsky, Kolganova, Van Kolck, Bedaque, Phillips,...

- Scaling limit: T. Frederico, LT, A. Delfino and E. A. Amorim, PRA60, R9 (1999)
- *Limit cycle*: Mohr et al Ann.Phys. 321 (2006)225
- Correlation between observables: Phillips Plot ²a_{nd} v.s. E_{triton}

Range correction: Thogersen, Fedorov, Jensen PRA78(2008)020501(R)

Four-bosons

Subtracted Green's Functions: $G_0^{(N)} = \frac{1}{E-H_0} - \frac{1}{-\mu_N^2 - H_0}$ with μ_3 (RED): 3B scale & μ_4 (BLUE): 4B scale

Yamashita, Tomio, Delfino, TF, EPL 75 (2006) 555.

H.W. Hammer and L. Platter, Universal properties of the four-body system with large scattering lengths, European Physical Journal 32, 113 (2007)

- Zero-range potential EFT
- Three-body repulsive potential to deal with the Thomas collapse

Repulsive interaction at short distances kills the four-body scale.

How to check the 4-boson scale? Use an attractive interaction

J. von Stecher, J.P. D'Incao, C.H. Greene, Signatures of universal four-body phenomena and their relation to the Efimov effect, Nature Physics 5, 417 (2009).

•Two-body Gaussian potential - Stochastic variational method

M. Gattobigio, A. Kievsky, M. Viviani, Energy spectra of small bosonic clusters having a large two-body scattering length, Physical Review A 86, 042513 (2012).

•Two-body Gaussian LM2M2 potentials - Hyperspherical formalism

How to check 4-boson scale? Disentangle the scales by a four-body potential

Experimental verification?

Technique to tune three or four-body potentials!!!!

Halo Nuclei and Efimov physics (n+n+core)

Fedorov, Jensen, Riisager, "Efimov states in halo nuclei" PRL73 (1994) 2817. ¹⁴Be ¹⁸C ²⁰C

Mazumdar, Bhasin, "Efimov effect in the nuclear halo 14Be nucleus" PRC 56 (1997) R5

Amorim, TF, Tomio "Universal aspects of Efimov states and light halo nuclei", PRC 56, R2378 (1997)

Mazumdar, Arora, Bhasin, "Three-body analysis of the occurrence of Efimov states in 2n halo nuclei such as ¹⁹B, ²²C, and ²⁰C", PRC61 (2000) 051303

Halo Nuclei and EFT

Bertulani, Hammer, van Kolck, "Effective field theory for halo nuclei: shallow p-wave states", NPA712 (2002) 37

Halo Nuclei, EFT and Efimov physics

Hammer, Platter, "Efimov States in Nuclear and Particle Physics", Annu. Rev. Nucl. Part. Sci. 60 (2010) 207

First observation of excited states in ¹²Li

(n+n+n+core)

C. C. Hall,¹ E. M. Lunderberg,¹ P. A. DeYoung,^{1,*} T. Baumann,² D. Bazin,² G. Blanchon,³ A. Bonaccorso,⁴ B. A. Brown,^{2,5} J. Brown,⁶ G. Christian,^{2,5} D. H. Denby,¹ J. Finck,⁷ N. Frank,^{2,5,†} A. Gade,^{2,5} J. Hinnefeld,⁸ C. R. Hoffman,^{9,10} B. Luther,¹¹ S. Mosby,^{2,5} W. A. Peters,^{2,5,‡} A. Spyrou,^{2,5} and M. Thoennessen^{2,5}

The neutron-unbound ground state and two excited states of ¹²Li were formed by the two-proton removal reaction from a 53.4-MeV/u ¹⁴B beam. The decay energy spectrum of ¹²Li was measured with the Modular Neutron Array (MoNA) and the Sweeper dipole superconducting magnet at the National Superconducting Cyclotron Laboratory. Two excited states at resonance energies of 250 ± 20 keV and 555 ± 20 keV were observed for the first time and the data are consistent with the previously reported *s*-wave ground state with a scattering length of $a_s = -13.7$ fm.

Pauli principle kills sensitivity to the 4-body scale!

Scales of s-wave n-n-c system: contact interaction

E_{nn} Energy of the virtual nn system

 E_{nc} Energy of the bound/virtual nc system

$$B_N = |E_3^{(N)}|$$
 Energy of the Nth state of the nnc system

A = mass of the core

Root mean square radii: Core+neutron+neutron

The experimental values of the charge radius of ⁹Li and ¹¹Li are given in [4] as 2.217(35) and 2.467(37) fm, respectively, such that $\sqrt{\langle r_{ch}^2(^{11}\text{Li}) \rangle - \langle r_{ch}^2(^{9}\text{Li}) \rangle} = 1.08(11)$ fm. A neutron halo radius of 6.54(38) fm was obtained from the extracted matter radius in the experiment performed by [3]. Together with $S_{2n} = 369.15(65)$ keV, reported in [176] for ¹¹Li, the experimental value of the root-mean-square distance of ⁹Li in respect to the center-of-mass of ¹¹Li ($\sqrt{\langle r_c^2 \rangle}$) in units of $\hbar/\sqrt{m_n S_{2n}}$, is 0.10(1) and the halo radius ($\sqrt{\langle r_n^2 \rangle}$) in such units is 0.617(36), these values should be compared with the theoretical results extracted from Fig. 21, of 0.10 and 0.61, respectively. The agreement with the experimental supports the model assumptions.

- [3] P. Egelhof, et al., Eur. J. Phys. A 15 (2002) 27.
- [4] R. Sánchez, et al., Phys. Rev. Lett. 96 (2006) 033002.
- [176] M. Smith, et al., Phys. Rev. Lett. 101 (2008) 202501.

Root mean square radii: Core+neutron+neutron

• Moriguchi et al. PRC88, 024610 (2013) -RIKEN reaction cross-section $r_n \sim 6.1$ fm

Yamashita, Tomio and T. F. NPA 735, 40 (2004)

- S_{2n} =369 keV Smith et al. PRL101(2008)
- IMPROVE $E_v[^{10}Li]$!

Canham and Hammer NPA 836 (2010) 275

Nucleus	$B_3 \; [\text{keV}]$	E_{nc} [keV]	$r_0 [\mathrm{fm}]$	$\sqrt{\langle r_{nn}^2 \rangle}$ [fm]	$\sqrt{\langle r_{nc}^2 \rangle}$ [fm]	$\sqrt{\langle r_n^2 \rangle}$ [fm]	$\sqrt{\langle r_c^2 \rangle}$ [fm]
$^{11}\mathrm{Li}$	247	-25	0.0	$8.7 {\pm} 0.7$	$7.1{\pm}0.5$	6.5 ± 0.5	$1.0{\pm}0.1$
	247	-25	1.4	$8.80{\pm}0.07$	$7.21{\pm}0.06$	6.51 ± 0.05	1.040 ± 0.008
	247	-800 [48]	0.0	$6.8 {\pm} 1.8$	$5.9 {\pm} 1.5$	5.3 ± 1.4	$0.9{\pm}0.2$
	247	-800 [48]	1.4	$6.3 {\pm} 0.5$	$5.5 {\pm} 0.4$	4.9±0.4	$0.81 {\pm} 0.06$
^{14}Be	1120	-200 [49]	0.0	4.1 ± 0.5	$3.5 {\pm} 0.5$	$3.2{\pm}0.4$	$0.40{\pm}0.05$
	1120	-200 [49]	1.4	$3.86{\pm}0.09$	$3.29{\pm}0.08$	$3.02 {\pm} 0.07$	$0.384{\pm}0.009$
^{12}Be	3673	503	0.0	$3.0{\pm}0.6$	$2.5 {\pm} 0.5$	$2.3{\pm}0.5$	$0.32{\pm}0.07$
	3673	503	1.4	$3.3{\pm}0.2$	$2.7{\pm}0.1$	$2.5 {\pm} 0.1$	$0.35 {\pm} 0.02$
¹⁸ C	4940	731	0.0	$2.6{\pm}0.7$	$2.2{\pm}0.6$	$2.1{\pm}0.5$	$0.18 {\pm} 0.05$
	4940	731	1.4	$2.9{\pm}0.2$	$2.4{\pm}0.2$	$2.3{\pm}0.2$	$0.21{\pm}0.01$
$^{20}\mathrm{C}$	3506	$530 \ [45]$	0.0	$3.0{\pm}0.7$	$2.5 {\pm} 0.6$	$2.4{\pm}0.5$	$0.19{\pm}0.04$
	3506	$530 \ [45]$	1.4	$3.38 {\pm} 0.18$	$2.75 {\pm} 0.15$	$2.60{\pm}0.14$	$0.21{\pm}0.01$
	3506	162	0.0	$2.8 {\pm} 0.3$	$2.4{\pm}0.3$	$2.3 {\pm} 0.3$	$0.19{\pm}0.02$
	3506	162	1.4	$3.03 {\pm} 0.06$	$2.53{\pm}0.05$	$2.39{\pm}0.05$	$0.198 {\pm} 0.004$
	3506	60	0.0	$2.8 {\pm} 0.2$	$2.3 {\pm} 0.2$	$2.2{\pm}0.2$	$0.18 {\pm} 0.01$
	3506	60	1.4	$2.84{\pm}0.03$	$2.41 {\pm} 0.03$	$2.28{\pm}0.03$	$0.192{\pm}0.002$
$^{20}C^{*}$	$65.0{\pm}6.8$	60	0.0	42 ± 3	38 ± 3	41 ± 3	$2.2{\pm}0.2$
${}^{20}C^{*}$	$64.9{\pm}0.7$	60	1.4	$43.2 {\pm} 0.5$	$38.7 {\pm} 0.4$	$42.9{\pm}0.5$	$2.26{\pm}0.02$

Neutron-neutron correlation function

One-body density
$$\rho(\vec{q}_{nA}) = \int d^3 q_{n'A} \left| \Phi\left(-\vec{q}_{nA} - \vec{q}_{n'A}, \frac{\vec{q}_{nA} - \vec{q}_{n'A}}{2} \right) \right|^2$$

 $\Phi = \Phi(\vec{q}_A, \vec{p}_A)$ Breakup amplitude including the FSI between the neutrons

$$\Phi = \Psi\left(\vec{q}_A, \vec{p}_A\right) + \frac{1/(2\pi^2)}{\sqrt{E_{nn}} - ip_A} \int d^3p \frac{\Psi\left(\vec{q}_A, \vec{p}\right)}{p_A^2 - p^2 + i\varepsilon}$$

 Ψ is the three-body wave function

Neutron-neutron correlation function

Yamashita, TF, Tomio PRC 72, 011601(R) (2005)

Neutron-neutron correlation function

F. M. Marqués et al. Phys. Rev. C **64**, 061301 (2001)

) —…—

M. Petrascu et al. Nucl. Phys. A **738**, 503 (2004) $E_3 = 0.29 \text{ MeV}$ $E_{nA} = 0.05 \text{ MeV}$ $E_3 = 0.37 \text{ MeV}$ $E_{nA} = 0.8 \text{ MeV}$ $E_3 = 0.37 \text{ MeV}$ $E_3 = 0.37 \text{ MeV}$ $E_3 = 0.37 \text{ MeV}$

Enn = 0.143 MeV

Threshold for an excited Efimov state: Halo-nuclei

 $z=\sqrt{(E_3^{(N+1)}-E_2)/E_3^{(N)'}}$

Critical condition for an excited (N+1)-th above the N-th state

Amorim, TF, Tomio PRC56(1997)2378

Canham and Hammer EPJ A 37 (2008) 367; NPA 836 (2010) 275

analytic structure & Efimov state trajectory

S.K. Adhikari and L. Tomio, Phys. Rev. C **26**, 83 (1982); S.K. Adhikari, A.C. Fonseca, and L. Tomio, *ibid.* **26**, 77 (1982).

F. Bringas, M.T. Yamashita and T. Frederico, Phys. Rev. A **69**, 040702(R) (2004).

²⁰C virtual Efimov state

Arora, Mazumdar, Bhasin PRC69 (2004)061301(R) Mazumdar, Rau, Bhasin PRL97(2006)062503 Efimov state \rightarrow Fano resonance of n+¹⁹C by changing E_{nc}

Yamashita, TF,Tomio, PRL99 (2007)269201 & PLB660(2008)339 Efimov state \rightarrow virtual state by changing E_{nc}

T. Nakamura, et al., Phys. Rev. Lett. 83 (1999) 1112. $S_n[\,{}^{19}C\,]=~530\,\pm\,130~{\rm keV}$

n-¹⁹*C* scattering and Efimov physics

What to expect for s-wave scattering? Look at doublet neutron-deuteron scattering...

Pole in s-wave kcot(δ) for n-d system ! Well known ~ 50 years

Delves' 60, Van oers & Seagrave' 67, Girard & Fuda' 78

$$kcot\delta_0 = -A + Bk^2 - \frac{C}{1 + Dk^2},$$

Universal property!

The existence of the triton virtual state was found on the basis of the effective range expansion.

The atom-dimer (three-boson) scattering length is approximately given in Bratten and Hammer (Phys. Rep. 428 (2006) 259):

$$a_{AD} = (1.46 - 2.15 \tan[s_0 ln(a\Lambda_*) + 0.09])a$$

where $s_0 = 1.00624$.

n-¹⁹C scattering and Efimov physics

$ E_{^{19}\mathrm{C}} (\mathrm{keV})$	$(a_{n-^{19}C})^{-1} (\text{fm}^{-1})$	$\beta \; (\text{fm.keV})^{-1}$	$\gamma (\mathrm{fm.keV^2})^{-1}$	$E_0 \ (\text{keV})$
200	$-0.591 \ 10^{-2}$	$5.685 \ 10^{-4}$	$4.673 \ 10^{-8}$	1442.745
400	$-0.624 \ 10^{-1}$	$6.743 \ 10^{-4}$	8.821 10-8	823.887
600	$-2.118 \ 10^{-1}$	$9.337 \ 10^{-4}$	$1.464 \ 10^{-7}$	451.398
800	-1.268	$3.11 \ 10^{-3}$	$4.424 \ 10^{-7}$	114.976
850	-5.510	$1.201 \ 10^{-2}$	$1.641 \ 10^{-6}$	28.845

n-¹⁹C scattering and Efimov physics

²⁰C has an excited bound Efimov state

$^{22}C = n - n - ^{20}C$

K. Tanaka et al., Phys. Rev. Lett. 104 (2010) 062701

Reaction cross sections (σ_R) for ¹⁹C, ²⁰C and the drip-line nucleus ²²C on a liquid hydrogen target have been measured at around 40A MeV by a transmission method. A large enhancement of σ_R for ²²C compared to those for neighboring C isotopes was observed. Using a finite-range Glauber calculation under an optical-limit approximation the rms matter radius of ²²C was deduced to be 5.4 ± 0.9 fm. It does not follow the systematic behavior of radii in carbon isotopes with $N \leq 14$, suggesting a neutron halo. It was found by an analysis based on a few-body Glauber calculation that the two-valence neutrons in ²²C preferentially occupy the $1s_{1/2}$ orbital.

 $^{22}C = n - n - ^{20}C$

H.T. Fortune, R. Sherr, Phys. Rev. C 85 (2012) 027303.

Acharya, Ji, Phillips PLB723(2013)19 [S < 100 keV] (EFT) Horiuchi and Y. Suzuki, Phys. Rev. C 74, 034311 (2006)

 $^{22}C = n - n - ^{20}C$

²²C

 ^{21}C with a virtual state with energy 1 MeV \rightarrow It is not possible an excited Efimov state/continuum resonance Limit cycle: one-body momentum densities n+n+A (A=20)

Halo-neutron momentum distribution in ²²C

If L_{total} is nonzero ?

- Virtual p-wave states of light non Borromean nn halo nuclei $E_{virtual} \sim 1.7 E_{nc}$ (Delfino et al PRC61, 051301 (2000))
- Soft dipole mode:
- M. Cubero et al, PRL 109, 262701 (2012) ${}^{11}Li+{}^{208}Pb$ close the Coulomb barrier $\rightarrow E_{res}=690$ keV width=0.32 keV
- Fernandez-Garcıa et al PRL 110, 142701 (2013) ¹¹Li+²⁰⁸Pb breakup around the Coulomb barrier
- Ershov, Vaagen, Zhukov, PRC 86 (2012) 034331 ²²C

Determined by scattering lenghts only!

Summary

Weakly bound & large systems: **few scales regime** in halo nuclei, molecules, trapped atoms CORRELATIONS BETWEEN OBSERVABLES→ CONSTRAINTS!

Zero-range model n-n-c system: threshold conditions for excited states and resonances borromean configuration: Efimov state > resonance at least one subsystem is bound: Efimov state > virtual state

Few-examples: ${}^{11}Li$, ${}^{14}Be$, ${}^{20}C$, ${}^{22}C$

²⁰C Efimov state \rightarrow virtual state $E_{19C} > 165 \text{ keV}$

²²C large nn halo S_{2n} ~ 30 keV with ²¹C virtual state 1 MeV (from $|a_s| \le 2.8 \text{ fm}$) \rightarrow

No Efimov continuum resonance/excited state (range corrections?)

Outlook

Neutron halo > 2n (no need of a 4-body scale)... $1^{2}Li = {}^{10}Li + n + n + n$, ${}^{21}C = {}^{18}C + n + n + n$

Exploration of universality in scattering, breakup of halo nuclei & CDCC ...

Pigmy resonances L_{total}=1,2, 3 ...

Fix the tail of ab-initio calculations...

Collaborators:

Antonio Delfino (UFF/Brazil) Filipe Bellotti (PhD/ITA/Aarhus) Mohammadreza Hadizadeh (Ohio Univ) Lauro Tomio (IFT/Brazil) Marcelo Yamashita (IFT/Brazil)