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From quarks to nuclei

• Nuclear physics emerges from the underlying Standard Model

• How exactly does this happen?
What does it take to make a quantitative
connection?

• Recent progress: focus on BB interactions 
and light nuclei

• Future directions



Quantum chromodynamics

• Lattice QCD: quarks and gluons

• Formulate problem as functional integral 
over quark and gluon d.o.f. on R4

• Discretise and compactify system 

• Integrate via importance sampling
(average over important gluon cfgs)

• Undo the harm done in previous steps

• Major computational challenge ...
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Figure 1: Results of the UTA within the SM. The contours display the selected 68%

and 95% probability regions in the (⇢, ⌘)-plane. The 95% probability regions selected

by the single constraints are also shown.

Observable Input value SM prediction Pull
"K · 103 2.23± 0.01 1.96± 0.20 1.4

�ms[ps�1] 17.69± 0.08 18.0± 1.3 < 1
|Vcb| · 103 41.0± 1.0 42.3± 0.9 < 1
|Vub| · 103 3.82± 0.56 3.62± 0.14 < 1

Br(B ! ⌧⌫) · 104 1.67± 0.30 0.82± 0.08 2.7
sin 2� 0.68± 0.02 0.81± 0.05 2.4
↵ 91� ± 6� 88� ± 4� < 1
� 76� ± 11� 68� ± 3� < 1

Table 2: Comparison between input value and SM prediction for the UTA constraints.
The pull is also shown.

bag parameters fBs, fBs/fB, BBs and BBs/BB, which enter the theoretical predictions
of the B-physics observables �md, �md/�ms and Br(B ! ⌧⌫).

The main results of the UTA [22], performed by the UTfit collaboration assuming
the validity of the SM, are summarized in fig. 1, where the curves representing the
UTA constraints intersect in a single allowed region for (⇢, ⌘), proofing that the CKM
parameters are consistently overconstrained. In other words, the UTA has established
that the CKMmatrix is the dominant source of flavor mixing and CP violation and the
parameters ⇢ and ⌘ turn out to have the values ⇢ = 0.139±0.021 and ⌘ = 0.352±0.016.
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21st century LQCD

• LQCD is an old field: 30+ years since first calculations

• ~2000: QCD (no “quenched” mutilation)

• ~2008: QCD with physical quark masses

• For simple observables – 
precision science

• Combine with experiment 
to determine SM parameters

• SM predictions with reliable 
uncertainty quantification  

R. Van de Water Aspen 2012: Recent lattice-QCD results for heavy flavors

In this paper, we discuss three topics: the normalization and q2-dependence of the D → Klν
form factor; the decay constants of the D+ and Ds mesons; and the mass of the Bc meson. Each
of these lattice-QCD calculations was subsequently confirmed by experimental measurements,
satisfying a long-standing demand of experimental physicists [6]. The quantities discussed here
were ideal candidates: they are straightforward to compute; they test the controversial aspects
in complementary ways; and the first “good” experimental measurements were expected on the
same time scale. The success of the predictions is extremely encouraging. In particular, the
calculations for D mesons are, in lattice QCD, similar to those for B mesons, whose b quarks
are considered likely to exhibit new, non-Standard interactions.

2. Semileptonic D Decays
Semileptonic decays such as D → Klν proceed as follows. A quark (in this case, a charmed
quark) emits a virtual W boson, thereby turning into a quark of a different flavor (in this case,
a strange quark). The W immediately disintegrates into a lepton-neutrino (lν) pair. The rate
depends on q2, which is the invariant-mass-squared of lν. Some of the q2 dependence stems from
QCD through a function called a form factor (in this case, denoted f+(q2)). The momentum
transfer q2 falls in the range 0 ≤ q2 ≤ q2

max = (mD−mK)2. In lattice QCD, discretization effects
are smallest when the spatial momentum p of the kaon is small, which puts q2 close to q2

max.
Experiments usually measure the branching fraction and quote the normalization f+(0),

after making assumptions about the q2 dependence. While our results were still preliminary [7],
experimental results came out for the normalization of D → Klν [8] and D → πlν [9]. The
agreement with our final results [10] is excellent. For example, we find fD→K

+ (0) = 0.73(3)(7) [10]
while the BES Collaboration measures fD→K

+ (0) = 0.78(5) [8].
In principle, the shape of the form factors can be computed directly in lattice QCD. In

practice, we calculated at a few values of p and used a fit to the Ansatz of Bećirević-Kaidalov
(BK) [11] to fix the q2 dependence. It was important, therefore, to measure the q2 dependence
experimentally. In photoproduction of charm off fixed nuclear targets, the FOCUS Collaboration
was able to collect high enough statistics to trace out the q2 distribution of the decay [12].
This setup does not yield an absolutely normalized branching ratio, so one is left to compare
f+(q2)/f+(0).

In Fig. 1(a) we plot our result for f+(q2)/f+(0) vs. q2/m2
D∗

s
. The errors from f+(0) must

be propagated to non-zero q2, so for f+(q2)/f+(0) the errors grow with q2. Figure 1 shows 1-σ
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Figure 1. Form factor for D → Klν vs. q2/m2
D∗

s
: (a) shape f+(q2)/f+(0) compared with

FOCUS [12]; (b) shape and normalization f+(q2) compared with Belle [14].
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Successes of lattice QCD

Lattice-QCD calculations now reproduce experimental results for a wide variety of 
hadron properties and provide the only ab initio QCD calculation of others, e.g.:

Most accurate determination of strong coupling constant

Predictions of Bc meson mass, decay constants fD & fDs, and D→Klν form factor 

Determinations of the light u, d, and s quark masses

Demonstrate that lattice-QCD calculations are reliable with controlled systematic errors

[Fermilab Lattice & MILC, 

Phys.Rev.Lett 94:011601,2005]
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updates at www.latticeaverages.org]
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QCD: meson/baryon spectrum

Ground state B=0,1 spectrum of QCD

[A Kronfeld, 1209.3468]
points correspond to different sets of calculations



QCD: meson/baryon spectrum

Ground state B=0,1 spectrum of QCD

[A Kronfeld, 1209.3468]
points correspond to different sets of calculations

Time to move up the 
periodic table



• Measure correlator (χ = object with q# of hadron)

• Unitarity: 

•  Hamiltonian evolution

• Long times only ground state survives

QCD Spectroscopy

t!1�! e�E0(0)t|h0; 0|�(x0, t)|0i|2 = Z e�E0(0)t

C2(t) =
X

x

h0|�(x, t)�(0, 0)|0i

=
X

x

X

n

h0|�(x, t)|nihn|�(0, 0)|0i

=
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n

e�Enteipn·xh0|�(0, 0)|nihn|�(0, 0)|0i

P
n |nihn| = 1

t

�(x) = u(x)�5d(x)



Effective mass

• Construct 

• Plateau corresponds to energy of ground state

• Fancier techniques able to resolve multiple eigenstates

M(t) = ln [C2(t)/C2(t + 1)] t!1�! M
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Nuclei: an (exponentially hard)2 problem

• What abiut  nuclear  spectroscopy?

• Complexity:  number of
Wick contractions = (A+Z)!(2A-Z)!

• Dynamical range of scales: requires care 
with numerical precision

• Small energy splittings

• Importance sampling: statistical 
noise exponentially increases with A

keV

73Ge

h0|Tq1(t) . . . q624(t)q1(0) . . . q624(0)|0i
t!1�! # exp(�MPbt)
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The trouble with baryons

• Importance sampling of QCD functional integrals 
➤ correlators determined stochastically 

• Proton 

• Variance determined by 

• For nucleus A:

π

π

π

[Lepage ’89]
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Many Pions – a nice diversion

Energy density vs Stefan-Boltzmann

[WD, Shi, Orginos1205.4224]

• Pions as a testing ground

• Similar many-body problems, 
but constant noise

• Contractions satisfy recursion
[WD & M Savage; Z Shi & WD]

• Systems interesting in their own right

• Use to extract 2 & 3 body interactions

• Canonical approach to QCD with 
an effective isospin chemical potential

• Systems of up to Iz=72: explore 
pion BEC and crossover to BCS
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NN interactions and light nuclei

1. Scattering phase shifts for baryon-baryon systems

2. Dibaryon systems

3. Light nuclei and hyper-nuclei



Hadron scattering

• Maiani-Testa: extracting multi-hadron S-matrix elements 
from Euclidean lattice calculations of Green functions in 
infinite volume is impossible

• Lüscher: volume dependence of two-particle energy levels 
⇒ scattering phase-shift, δ(p), up to inelastic threshold
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Hadron-hadron scattering

• Maiani-Testa: extracting multi-hadron S-matrix elements 
from Euclidean lattice calculations of Green functions in 
infinite volume is impossible

• Lüscher: volume dependence of two-particle energy levels 
⇒ scattering phase-shift, δ(p), up to inelastic threshold

• Exact relation provided r«L

• Used for ππ, KK, ... 

• A precision science for stretched states

• Known for many years in QM, NP

E

2M

Bound state

Scattering poles



Example: I=2 ππ

• Study multiple energy levels of two pions in a box for multiple 
volumes and with multiple PCM
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Example: I=2 ππ

• Study multiple energy levels of two pions in a box for multiple 
volumes and with multiple PCM
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• Allows phase shift to be extracted at multiple energies
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NN phase shifts

• Recent calculation of NN phase 
shifts at mπ=800 MeV

• Scattering length and effective range 
extracted with O(10%) precision

• Fine-tuning of NN at physical mass?

• Wigner SU(4) symmetry
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FIG. 10: The phase shift in the 3S1 channel. The left panel is a two-parameter fit to the ERE, while
the right panel is a three-parameter fit to the ERE, as described in the text. The inner (outer)
shaded region corresponds to the statistical uncertainty (statistical and systematic uncertainties
combined in quadrature) in two- and three-parameter ERE fit to the results of the Lattice QCD
calculation. The vertical (red) dashed line corresponds to the start of the t-channel cut and the
upper limit of the range of validity of the ERE. The light (green) dashed line corresponds to the
phase shift at the physical pion mass from the Nijmegen phase-shift analysis [38].

V. NUCLEON-NUCLEON EFFECTIVE RANGES

Unlike the scattering length, the size of the e↵ective range and the higher-order contributions
to the ERE are set by the range of the interaction. The leading estimate of the e↵ective range
for light quarks is r ⇠ 1/m

⇡

, and higher order contributions are expected to be suppressed
by further powers of the light-quark masses. It is natural to consider an expansion of the
product m

⇡

r in the light-quark masses. While the most general form of the expansion
contains terms that are non-analytic in the pion mass [40–43], for instance of the form
m

q

logm
q

, with determinations at only two pion masses (including the experimental value)
a polynomial fit function is chosen,

m

⇡

r = A + B m

⇡

+ ... . (7)

In fig. 11, the results of our LQCD calculations of m
⇡

r are shown, along with the experi-
mental value in each channel and a fit to the form given in eq. (7). While the uncertainties
in the lattice determinations are somewhat large compared to those of the experimental de-
termination, it appears that there is modest dependence upon the light-quark masses. The
fit values are

A

(1S0) = 1.348+0.080
�0.080

+0.079
�0.083 , B

(1S0) = 4.23+0.55
�0.56

+0.59
�0.57 GeV�1

A

(3S1) = 0.726+0.065
�0.059

+0.072
�0.059 , B

(3S1) = 3.70+0.42
�0.47

+0.42
�0.52 GeV�1

. (8)

The two-parameter fit is clearly over simplistic and more precise LQCD calculations are
required at smaller light-quark masses to better constrain the light-quark mass dependence
of the e↵ective ranges.
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are performed and shown as
the shaded regions in fig. 8. The scattering length and e↵ective range determined from the
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m

⇡

a

(3S1) = 7.45+0.57
�0.53

+0.71
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and fig. 9 shows the 68% confidence region for the extracted values of a(
3
S1) and r

(3S1). The
shape parameter obtained from the three parameter fit to the ERE expansion is consistent
with zero: Pm

3
⇡

= 2+5
�6

+5
�6. Again the scattering length and e↵ective range extracted from the

three-parameter fit are consistent with the two-parameter fit, but with larger uncertainties.
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FIG. 9: The 68% confidence region associated with m
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3
S1) and m
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r(
3
S1) in the 3S1 channel. The

inner region corresponds to statistical uncertainties and the outer region corresponds to statistical
and systematic uncertainties combined in quadrature.

The phase shift below the t-channel cut can be determined from these fit parameters, and
is shown in fig. 10, along with the results of the LQCD calculations and the phase shift at
the physical point. As in the 1

S0 channel, the phase shift predicted by the ERE is expected
to deviate significantly from the true phase shift near the t-channel cut, and this is seen in
fig. 10. Like the 3

S1 phase shift at the physical point, and the phase shift we have obtained
in the 1

S0 channel, the phase shift at the SU(3) symmetric point is found to change sign at
larger momenta, consistent with the presence of a repulsive hard core in the NN interaction.
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isospin violating e↵ects due to light-quark mass di↵erences and electromagnetism. However,
given the experimental determinations of the nn, np and pp scattering lengths, these e↵ects
are expected to be small.

It is interesting to note that the ratio of the scattering length to the e↵ective range in
the two channels have very similar values at the quark masses used in this work:

a

(3S1)
/r

(3S1) = 2.06+0.22
�0.18

+0.25
�0.19 , a

(1S0)
/r

(1S0) = 2.02+0.23
�0.19

+0.29
�0.18 , (9)

and that the scattering lengths in the two channels, and also the e↵ective ranges, are within
⇠ 20% of each other. In the large-N

c

limit of QCD, the nuclear forces in the two spin
channels are equal up to corrections suppressed by O(1/N2

c

) [52], and the two channels
transform in the 6 of the Wigner SU(4) symmetry. In addition, inequalities for the binding
energies of light nuclei in the Wigner-symmetry limit have been found in Ref. [53]. The
closeness of the values of the scattering parameters at m

⇡

⇠ 800 MeV is consistent with the
expectations of the large-N

c

limit of QCD.

VII. CONCLUSIONS AND DISCUSSIONS

We have presented the results of Lattice QCD calculations of low-energy NN scattering
phase-shifts and scattering parameters at the SU(3) symmetric point with a pion mass
of m

⇡

⇠ 800 MeV. For the first time, the e↵ective ranges of the NN interactions have
been determined using lattice QCD. The calculated scattering lengths and e↵ective ranges
indicate that the pion is not the dominant contribution to the long range part of the nuclear
force at these large light-quark masses, as anticipated from the single-hadron spectrum. In
both spin channels, the NN phase shifts change sign at higher momentum, near the start
of the t-channel cut, indicating that the nuclear interactions have a repulsive core even
for heavier quark masses. This suggests that the form of the nuclear interactions, and the
e↵ective potentials that will reproduce the scattering amplitude below the inelastic threshold,
is qualitatively similar to the phenomenological potentials that describe the experimental
scattering data at the physical pion mass.

Both spin channels are, in a sense, more natural at m
⇡

⇠ 800 MeV, where both satisfy
a/r ⇠ +2.0, than at the physical pion mass where a

(1S0)
/r

(1S0) ⇠ �8.7 and a

(3S1)
/r

(3S1) ⇠
+3.1. The relatively large size of the deuteron compared with the range of the nuclear forces
may persist over a large range of light-quark masses, and therefore might, in fact, not be
usefully regarded as a fine-tuning in n

f

= 2+ 1 QCD, but rather a generic feature. The 1
S0

channel, in contrast, is finely tuned at the physical light-quark masses and it remains to be
seen over what range of masses this persists.

Our calculations were performed at a single pion mass with one lattice spacing and in the
absence of electromagnetic interactions. It should be stressed that in the presence of fine-
tuning, as in the 1

S0 channel at the physical point, lattice-spacing artifacts can be enhanced
with respect to expectations based on naive dimensional analysis and scaling arguments. In
order to fully explore the behavior of the scattering phase shifts and scattering parameters
with fully quantified uncertainties, along with the issues of spin-flavor symmetry and fine
tunings, calculations at multiple lattice spacings and smaller light-quark masses are essential
and are planned for the future.
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In fig. 8, the extracted values of k cot �/m
⇡

given in Table III and from the deuteron
binding energy are shown as a function of |k|2/m2

⇡

. Following the procedure used to analyze
the results in the 1

S0-channel, again with three points to fit, two-parameter (left panel) and
three-parameter (right panel) fits to the ERE of k cot �/m

⇡

are performed and shown as
the shaded regions in fig. 8. The scattering length and e↵ective range determined from the
two-parameter fit are

m

⇡

a

(3S1) = 7.45+0.57
�0.53

+0.71
�0.49 , m

⇡

r

(3S1) = 3.71+0.28
�0.31

+0.28
�0.35 , (5)

corresponding to

a

(3S1) = 1.82+0.14
�0.13

+0.17
�0.12 fm , r

(3S1) = 0.906+0.068
�0.075

+0.068
�0.084 fm , (6)

and fig. 9 shows the 68% confidence region for the extracted values of a(
3
S1) and r

(3S1). The
shape parameter obtained from the three parameter fit to the ERE expansion is consistent
with zero: Pm

3
⇡

= 2+5
�6

+5
�6. Again the scattering length and e↵ective range extracted from the

three-parameter fit are consistent with the two-parameter fit, but with larger uncertainties.
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FIG. 9: The 68% confidence region associated with m
⇡

a(
3
S1) and m

⇡

r(
3
S1) in the 3S1 channel. The

inner region corresponds to statistical uncertainties and the outer region corresponds to statistical
and systematic uncertainties combined in quadrature.

The phase shift below the t-channel cut can be determined from these fit parameters, and
is shown in fig. 10, along with the results of the LQCD calculations and the phase shift at
the physical point. As in the 1

S0 channel, the phase shift predicted by the ERE is expected
to deviate significantly from the true phase shift near the t-channel cut, and this is seen in
fig. 10. Like the 3

S1 phase shift at the physical point, and the phase shift we have obtained
in the 1

S0 channel, the phase shift at the SU(3) symmetric point is found to change sign at
larger momenta, consistent with the presence of a repulsive hard core in the NN interaction.
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The phase shift below the t-channel cut can be determined from these fit parameters, and
is shown in fig. 10, along with the results of the LQCD calculations and the phase shift at
the physical point. As in the 1

S0 channel, the phase shift predicted by the ERE is expected
to deviate significantly from the true phase shift near the t-channel cut, and this is seen in
fig. 10. Like the 3

S1 phase shift at the physical point, and the phase shift we have obtained
in the 1

S0 channel, the phase shift at the SU(3) symmetric point is found to change sign at
larger momenta, consistent with the presence of a repulsive hard core in the NN interaction.
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panel) fits to the ERE of k cot �/m

⇡

are performed and are shown as the shaded regions in
fig. 3.

The successful description by a two-parameter fit indicates small values of the terms that
are higher order in the ERE, consistent with what is observed at the physical pion mass.
The scattering length and e↵ective range determined from the two-parameter fit are

m

⇡

a

(1S0) = 9.50+0.78
�0.69

+1.10
�0.80 , m

⇡

r

(1S0) = 4.61+0.29
�0.31

+0.24
�0.26 , (3)

corresponding to

a

(1S0) = 2.33+0.19
�0.17

+0.27
�0.20 fm , r

(1S0) = 1.130+0.071
�0.077

+0.059
�0.063 fm . (4)

The uncertainties associated with a

(1S0) and r

(1S0) are correlated, and their 68% confidence
region is shown in fig. 4. The uncertainty in the scattering length is asymmetric as it is
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FIG. 4: The 68% confidence region associated with m
⇡

a(1S0) and m
⇡

r(1S0) in the 1S0 channel. The
inner region corresponds to statistical uncertainties and the outer region corresponds to statistical
and systematic uncertainties combined in quadrature.

the inverse scattering length that is the fit parameter. The shape parameter obtained from
the three parameter fit to the ERE expansion is consistent with zero: Pm

3
⇡

= �1+4
�5

+5
�8. The

scattering length and e↵ective range extracted from the three-parameter fit are consistent
with the two-parameter fit, but with larger uncertainties. A full quantification of the the-
oretical error in the determination of the ERE parameters requires more calculations than
are currently available.

The phase shift below the t-channel cut can be determined from these fit parameters,
and is shown in fig. 5, along with the results of the LQCD calculations and the phase shift
at the physical values of the quark masses. We expect the phase shift predicted by the ERE
to deviate significantly from the true phase shift near the start of the t-channel cut, and this
is indeed suggested by fig. 5. Like the phase shift at the physical point, the phase shift at
the SU(3) symmetric point is found to change sign at larger momenta, consistent with the
presence of a repulsive hard core in the NN interaction.
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• Hyperon-nucleon phase shifts important
EoS of neutron stars

• Determine at one quark mass

• Match to effective field theory to 
extract phase shift at physical mass
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FIG. 1: LQCD-predicted 1S0 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.
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FIG. 2: LQCD-predicted 3S1 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

tor, thereby determining the LO interaction, including
energy-independent and local potentials, wavefunctions
and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the 1S0 n⌃�

channel are consistent with the SU(3) symmetry expecta-
tions. At m⇡ ⇠ 389 MeV, using a volume extrapolation
as discussed above, we find that this channel has a bound
state, with binding energy B = 25± 9.3± 11 MeV. The
quality of the LQCD data in the 1S0 n⌃� channel is com-
parable to that of its 27-plet partner ⌅�⌅�, analyzed in
detail in Ref. [30] (see also [45]). In the EFT, the coe�-
cient of the LO contact operator in this channel is deter-
mined by tuning it to reproduce the LQCD-determined
binding energy. We find that this channel becomes un-
bound at m⇡

<⇠ 300 MeV, in agreement with Ref. [46],
which constrained the LO contact operator using exper-
imental data. In Fig. 1, we show the predicted 1S0 n⌃�

phase shift at the physical pion mass — (dark, light) blue
bands correspond to (statistical, systematic) uncertain-
ties — and compare with the EFT constrained by ex-
perimental data [23], the Nijmegen NSC97f model [14],
and the Jülich ’04 model [18]. The systematic uncer-
tainties on our predictions include those arising from the
LQCD calculation (see [45]) as well as estimates of omit-

ted higher-order e↵ects in the EFT.
The 3S1-3D1 n⌃� coupled channel is found to be highly

repulsive in the s-wave at m⇡ ⇠ 389 MeV, requiring in-
teractions with a hard repulsive core of extended size.
Such a core, if large enough, would violate a condition re-
quired to use Lüscher’s relation, namely R ⌧ L/2 where
R is the range of the interaction. We have determined
the EFT potential directly by solving the 3-dimensional
Schrödinger equation in finite volume to reproduce the
energy levels obtained in the LQCD calculations. The re-
pulsive core is found to be large, and formally precludes
the use of Lüscher’s relation, but both methods lead to
phase shifts that agree within uncertainties, indicating
that the exponential corrections to Lüscher’s relation are
small. In Fig. 2, we show the predicted 3S1 n⌃� phase
shift at the physical pion mass.
The n⌃� interactions presented here are the crucial

ingredient in calculations that address whether ⌃�’s ap-
pear in dense neutron matter. As a first step, and in order
to understand the competition between attractive and re-
pulsive components of the n⌃� interaction, we adopt a
result due to Fumi for the energy shift due to a static
impurity in a non-interacting Fermi system [47]:
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where µ is the reduced mass in the n⌃� system. Us-
ing our LQCD determinations of the phase shifts, and
allowing for a 30% theoretical uncertainty, the resulting
energy shift and uncertainty band is shown in Fig. 3. At
neutron number density ⇢n ⇠ 0.4 fm�3, which may be
found in the interior of neutron stars, the neutron chem-
ical potential is µn ⇠ MN + 150 MeV due to neutron-
neutron interactions, and the electron chemical potential,
µe� ⇠ 200 MeV [48]. Therefore µn + µe� ⇠ 1290 MeV,
and consequently, if µ⌃� = M⌃+�E <⇠ 1290 MeV, that
is, �E <⇠ 100 MeV, then the ⌃�, and hence the strange
quark, will play a role in the dense medium. We find
using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at
⇢n = 0.4 fm�3. Corrections due to correlations among
neutrons are di�cult to estimate and will require many-
body calculations which are beyond the scope of this
study. Despite this caveat, the results shown in Fig. 3
indicate that the repulsion in the n⌃� system is inad-
equate to exclude the presence of ⌃�’s in neutron star
matter, a conclusion that is consistent with previous phe-
nomenological modeling (for a review, see Ref. [49]).

In this letter, we have presented the first LQCD predic-
tions for hypernuclear physics, the 1S0 and 3S1 n⌃� scat-
tering phase shifts shown in Fig. 1 and Fig. 2. While the
LQCD calculations have been performed at a single lat-
tice spacing, lattice-spacing artifacts are expected to be
smaller than the other systematic uncertainties. We an-
ticipate systematically refining the analysis presented in
this letter as greater computing resources become avail-
able. The n⌃� interaction is critical in determining the
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FIG. 1: LQCD-predicted 1S0 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.
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FIG. 2: LQCD-predicted 3S1 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

tor, thereby determining the LO interaction, including
energy-independent and local potentials, wavefunctions
and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the 1S0 n⌃�
channel are consistent with the SU(3) symmetry expecta-
tions. At m⇡ ⇠ 389 MeV, using a volume extrapolation
as discussed above, we find that this channel has a bound
state, with binding energy B = 25± 9.3± 11 MeV. The
quality of the LQCD data in the 1S0 n⌃� channel is com-
parable to that of its 27-plet partner ⌅�⌅�, analyzed in
detail in Ref. [30] (see also [45]). In the EFT, the coe�-
cient of the LO contact operator in this channel is deter-
mined by tuning it to reproduce the LQCD-determined
binding energy. We find that this channel becomes un-
bound at m⇡

<⇠ 300 MeV, in agreement with Ref. [46],
which constrained the LO contact operator using exper-
imental data. In Fig. 1, we show the predicted 1S0 n⌃�
phase shift at the physical pion mass — (dark, light) blue
bands correspond to (statistical, systematic) uncertain-
ties — and compare with the EFT constrained by ex-
perimental data [23], the Nijmegen NSC97f model [14],
and the Jülich ’04 model [18]. The systematic uncer-
tainties on our predictions include those arising from the
LQCD calculation (see [45]) as well as estimates of omit-

ted higher-order e↵ects in the EFT.
The 3S1-3D1 n⌃� coupled channel is found to be highly

repulsive in the s-wave at m⇡ ⇠ 389 MeV, requiring in-
teractions with a hard repulsive core of extended size.
Such a core, if large enough, would violate a condition re-
quired to use Lüscher’s relation, namely R⌧ L/2 where
R is the range of the interaction. We have determined
the EFT potential directly by solving the 3-dimensional
Schrödinger equation in finite volume to reproduce the
energy levels obtained in the LQCD calculations. The re-
pulsive core is found to be large, and formally precludes
the use of Lüscher’s relation, but both methods lead to
phase shifts that agree within uncertainties, indicating
that the exponential corrections to Lüscher’s relation are
small. In Fig. 2, we show the predicted 3S1 n⌃� phase
shift at the physical pion mass.

The n⌃� interactions presented here are the crucial
ingredient in calculations that address whether ⌃�’s ap-
pear in dense neutron matter. As a first step, and in order
to understand the competition between attractive and re-
pulsive components of the n⌃� interaction, we adopt a
result due to Fumi for the energy shift due to a static
impurity in a non-interacting Fermi system [47]:
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where µ is the reduced mass in the n⌃� system. Us-
ing our LQCD determinations of the phase shifts, and
allowing for a 30% theoretical uncertainty, the resulting
energy shift and uncertainty band is shown in Fig. 3. At
neutron number density ⇢n ⇠ 0.4 fm�3, which may be
found in the interior of neutron stars, the neutron chem-
ical potential is µn ⇠ MN + 150 MeV due to neutron-
neutron interactions, and the electron chemical potential,
µe� ⇠ 200 MeV [48]. Therefore µn + µe� ⇠ 1290 MeV,
and consequently, if µ⌃� = M⌃ +�E <⇠ 1290 MeV, that
is, �E <⇠ 100 MeV, then the ⌃�, and hence the strange
quark, will play a role in the dense medium. We find
using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at
⇢n = 0.4 fm�3. Corrections due to correlations among
neutrons are di�cult to estimate and will require many-
body calculations which are beyond the scope of this
study. Despite this caveat, the results shown in Fig. 3
indicate that the repulsion in the n⌃� system is inad-
equate to exclude the presence of ⌃�’s in neutron star
matter, a conclusion that is consistent with previous phe-
nomenological modeling (for a review, see Ref. [49]).

In this letter, we have presented the first LQCD predic-
tions for hypernuclear physics, the 1S0 and 3S1 n⌃� scat-
tering phase shifts shown in Fig. 1 and Fig. 2. While the
LQCD calculations have been performed at a single lat-
tice spacing, lattice-spacing artifacts are expected to be
smaller than the other systematic uncertainties. We an-
ticipate systematically refining the analysis presented in
this letter as greater computing resources become avail-
able. The n⌃� interaction is critical in determining the
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FIG. 3: The energy shift versus neutron density of a single
⌃� in a non-interacting Fermi gas of neutrons as determined
from Fumi’s theorem in Eq. (2). The inner (outer) band en-
compasses statistical (systematic) uncertainties.

relevance of hyperons in dense neutron matter, and we
have used the LQCD predictions of the phase shifts to es-
timate the ⌃� energy shift in the medium. Our calcula-
tion suggests that hyperons are important degrees of free-
dom in dense matter, consistent with expectations based
upon the available experimental data and hadronic mod-
eling. It is important that more sophisticated many-body
techniques be combined with the interactions determined
in this work to obtain a more precise determination of the
energy shift of the ⌃� in medium. This will refine the
prediction for the role of strange quarks in astrophysi-
cal environments, and, in particular, will quantitatively
address questions posed by the recent observation of a
1.9M� neutron star [50].
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[34] M. Lüscher, Commun. Math. Phys. 105, 153 (1986).
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FIG. 1: LQCD-predicted 1S0 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.
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FIG. 2: LQCD-predicted 3S1 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

tor, thereby determining the LO interaction, including
energy-independent and local potentials, wavefunctions
and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the 1S0 n⌃�

channel are consistent with the SU(3) symmetry expecta-
tions. At m⇡ ⇠ 389 MeV, using a volume extrapolation
as discussed above, we find that this channel has a bound
state, with binding energy B = 25± 9.3± 11 MeV. The
quality of the LQCD data in the 1S0 n⌃� channel is com-
parable to that of its 27-plet partner ⌅�⌅�, analyzed in
detail in Ref. [30] (see also [45]). In the EFT, the coe�-
cient of the LO contact operator in this channel is deter-
mined by tuning it to reproduce the LQCD-determined
binding energy. We find that this channel becomes un-
bound at m⇡

<⇠ 300 MeV, in agreement with Ref. [46],
which constrained the LO contact operator using exper-
imental data. In Fig. 1, we show the predicted 1S0 n⌃�

phase shift at the physical pion mass — (dark, light) blue
bands correspond to (statistical, systematic) uncertain-
ties — and compare with the EFT constrained by ex-
perimental data [23], the Nijmegen NSC97f model [14],
and the Jülich ’04 model [18]. The systematic uncer-
tainties on our predictions include those arising from the
LQCD calculation (see [45]) as well as estimates of omit-

ted higher-order e↵ects in the EFT.
The 3S1-3D1 n⌃� coupled channel is found to be highly

repulsive in the s-wave at m⇡ ⇠ 389 MeV, requiring in-
teractions with a hard repulsive core of extended size.
Such a core, if large enough, would violate a condition re-
quired to use Lüscher’s relation, namely R ⌧ L/2 where
R is the range of the interaction. We have determined
the EFT potential directly by solving the 3-dimensional
Schrödinger equation in finite volume to reproduce the
energy levels obtained in the LQCD calculations. The re-
pulsive core is found to be large, and formally precludes
the use of Lüscher’s relation, but both methods lead to
phase shifts that agree within uncertainties, indicating
that the exponential corrections to Lüscher’s relation are
small. In Fig. 2, we show the predicted 3S1 n⌃� phase
shift at the physical pion mass.
The n⌃� interactions presented here are the crucial

ingredient in calculations that address whether ⌃�’s ap-
pear in dense neutron matter. As a first step, and in order
to understand the competition between attractive and re-
pulsive components of the n⌃� interaction, we adopt a
result due to Fumi for the energy shift due to a static
impurity in a non-interacting Fermi system [47]:

�E = � 1

⇡µ

Z kf

0
dk k

h 3

2
�3S1

(k) +
1

2
�1S0

(k)
i
, (2)

where µ is the reduced mass in the n⌃� system. Us-
ing our LQCD determinations of the phase shifts, and
allowing for a 30% theoretical uncertainty, the resulting
energy shift and uncertainty band is shown in Fig. 3. At
neutron number density ⇢n ⇠ 0.4 fm�3, which may be
found in the interior of neutron stars, the neutron chem-
ical potential is µn ⇠ MN + 150 MeV due to neutron-
neutron interactions, and the electron chemical potential,
µe� ⇠ 200 MeV [48]. Therefore µn + µe� ⇠ 1290 MeV,
and consequently, if µ⌃� = M⌃+�E <⇠ 1290 MeV, that
is, �E <⇠ 100 MeV, then the ⌃�, and hence the strange
quark, will play a role in the dense medium. We find
using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at
⇢n = 0.4 fm�3. Corrections due to correlations among
neutrons are di�cult to estimate and will require many-
body calculations which are beyond the scope of this
study. Despite this caveat, the results shown in Fig. 3
indicate that the repulsion in the n⌃� system is inad-
equate to exclude the presence of ⌃�’s in neutron star
matter, a conclusion that is consistent with previous phe-
nomenological modeling (for a review, see Ref. [49]).

In this letter, we have presented the first LQCD predic-
tions for hypernuclear physics, the 1S0 and 3S1 n⌃� scat-
tering phase shifts shown in Fig. 1 and Fig. 2. While the
LQCD calculations have been performed at a single lat-
tice spacing, lattice-spacing artifacts are expected to be
smaller than the other systematic uncertainties. We an-
ticipate systematically refining the analysis presented in
this letter as greater computing resources become avail-
able. The n⌃� interaction is critical in determining the
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FIG. 1: LQCD-predicted 1S0 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.
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FIG. 2: LQCD-predicted 3S1 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

tor, thereby determining the LO interaction, including
energy-independent and local potentials, wavefunctions
and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the 1S0 n⌃�

channel are consistent with the SU(3) symmetry expecta-
tions. At m⇡ ⇠ 389 MeV, using a volume extrapolation
as discussed above, we find that this channel has a bound
state, with binding energy B = 25± 9.3± 11 MeV. The
quality of the LQCD data in the 1S0 n⌃� channel is com-
parable to that of its 27-plet partner ⌅�⌅�, analyzed in
detail in Ref. [30] (see also [45]). In the EFT, the coe�-
cient of the LO contact operator in this channel is deter-
mined by tuning it to reproduce the LQCD-determined
binding energy. We find that this channel becomes un-
bound at m⇡

<⇠ 300 MeV, in agreement with Ref. [46],
which constrained the LO contact operator using exper-
imental data. In Fig. 1, we show the predicted 1S0 n⌃�

phase shift at the physical pion mass — (dark, light) blue
bands correspond to (statistical, systematic) uncertain-
ties — and compare with the EFT constrained by ex-
perimental data [23], the Nijmegen NSC97f model [14],
and the Jülich ’04 model [18]. The systematic uncer-
tainties on our predictions include those arising from the
LQCD calculation (see [45]) as well as estimates of omit-

ted higher-order e↵ects in the EFT.
The 3S1-3D1 n⌃� coupled channel is found to be highly

repulsive in the s-wave at m⇡ ⇠ 389 MeV, requiring in-
teractions with a hard repulsive core of extended size.
Such a core, if large enough, would violate a condition re-
quired to use Lüscher’s relation, namely R ⌧ L/2 where
R is the range of the interaction. We have determined
the EFT potential directly by solving the 3-dimensional
Schrödinger equation in finite volume to reproduce the
energy levels obtained in the LQCD calculations. The re-
pulsive core is found to be large, and formally precludes
the use of Lüscher’s relation, but both methods lead to
phase shifts that agree within uncertainties, indicating
that the exponential corrections to Lüscher’s relation are
small. In Fig. 2, we show the predicted 3S1 n⌃� phase
shift at the physical pion mass.
The n⌃� interactions presented here are the crucial

ingredient in calculations that address whether ⌃�’s ap-
pear in dense neutron matter. As a first step, and in order
to understand the competition between attractive and re-
pulsive components of the n⌃� interaction, we adopt a
result due to Fumi for the energy shift due to a static
impurity in a non-interacting Fermi system [47]:

�E = � 1

⇡µ

Z kf

0
dk k

h 3

2
�3S1

(k) +
1

2
�1S0

(k)
i
, (2)

where µ is the reduced mass in the n⌃� system. Us-
ing our LQCD determinations of the phase shifts, and
allowing for a 30% theoretical uncertainty, the resulting
energy shift and uncertainty band is shown in Fig. 3. At
neutron number density ⇢n ⇠ 0.4 fm�3, which may be
found in the interior of neutron stars, the neutron chem-
ical potential is µn ⇠ MN + 150 MeV due to neutron-
neutron interactions, and the electron chemical potential,
µe� ⇠ 200 MeV [48]. Therefore µn + µe� ⇠ 1290 MeV,
and consequently, if µ⌃� = M⌃+�E <⇠ 1290 MeV, that
is, �E <⇠ 100 MeV, then the ⌃�, and hence the strange
quark, will play a role in the dense medium. We find
using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at
⇢n = 0.4 fm�3. Corrections due to correlations among
neutrons are di�cult to estimate and will require many-
body calculations which are beyond the scope of this
study. Despite this caveat, the results shown in Fig. 3
indicate that the repulsion in the n⌃� system is inad-
equate to exclude the presence of ⌃�’s in neutron star
matter, a conclusion that is consistent with previous phe-
nomenological modeling (for a review, see Ref. [49]).

In this letter, we have presented the first LQCD predic-
tions for hypernuclear physics, the 1S0 and 3S1 n⌃� scat-
tering phase shifts shown in Fig. 1 and Fig. 2. While the
LQCD calculations have been performed at a single lat-
tice spacing, lattice-spacing artifacts are expected to be
smaller than the other systematic uncertainties. We an-
ticipate systematically refining the analysis presented in
this letter as greater computing resources become avail-
able. The n⌃� interaction is critical in determining the
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FIG. 1: LQCD-predicted 1S0 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.
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FIG. 2: LQCD-predicted 3S1 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

tor, thereby determining the LO interaction, including
energy-independent and local potentials, wavefunctions
and phase shifts, at the physical pion mass.

We find that our LQCD calculations in the 1S0 n⌃�

channel are consistent with the SU(3) symmetry expecta-
tions. At m⇡ ⇠ 389 MeV, using a volume extrapolation
as discussed above, we find that this channel has a bound
state, with binding energy B = 25± 9.3± 11 MeV. The
quality of the LQCD data in the 1S0 n⌃� channel is com-
parable to that of its 27-plet partner ⌅�⌅�, analyzed in
detail in Ref. [30] (see also [45]). In the EFT, the coe�-
cient of the LO contact operator in this channel is deter-
mined by tuning it to reproduce the LQCD-determined
binding energy. We find that this channel becomes un-
bound at m⇡

<⇠ 300 MeV, in agreement with Ref. [46],
which constrained the LO contact operator using exper-
imental data. In Fig. 1, we show the predicted 1S0 n⌃�

phase shift at the physical pion mass — (dark, light) blue
bands correspond to (statistical, systematic) uncertain-
ties — and compare with the EFT constrained by ex-
perimental data [23], the Nijmegen NSC97f model [14],
and the Jülich ’04 model [18]. The systematic uncer-
tainties on our predictions include those arising from the
LQCD calculation (see [45]) as well as estimates of omit-

ted higher-order e↵ects in the EFT.
The 3S1-3D1 n⌃� coupled channel is found to be highly

repulsive in the s-wave at m⇡ ⇠ 389 MeV, requiring in-
teractions with a hard repulsive core of extended size.
Such a core, if large enough, would violate a condition re-
quired to use Lüscher’s relation, namely R ⌧ L/2 where
R is the range of the interaction. We have determined
the EFT potential directly by solving the 3-dimensional
Schrödinger equation in finite volume to reproduce the
energy levels obtained in the LQCD calculations. The re-
pulsive core is found to be large, and formally precludes
the use of Lüscher’s relation, but both methods lead to
phase shifts that agree within uncertainties, indicating
that the exponential corrections to Lüscher’s relation are
small. In Fig. 2, we show the predicted 3S1 n⌃� phase
shift at the physical pion mass.
The n⌃� interactions presented here are the crucial

ingredient in calculations that address whether ⌃�’s ap-
pear in dense neutron matter. As a first step, and in order
to understand the competition between attractive and re-
pulsive components of the n⌃� interaction, we adopt a
result due to Fumi for the energy shift due to a static
impurity in a non-interacting Fermi system [47]:
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where µ is the reduced mass in the n⌃� system. Us-
ing our LQCD determinations of the phase shifts, and
allowing for a 30% theoretical uncertainty, the resulting
energy shift and uncertainty band is shown in Fig. 3. At
neutron number density ⇢n ⇠ 0.4 fm�3, which may be
found in the interior of neutron stars, the neutron chem-
ical potential is µn ⇠ MN + 150 MeV due to neutron-
neutron interactions, and the electron chemical potential,
µe� ⇠ 200 MeV [48]. Therefore µn + µe� ⇠ 1290 MeV,
and consequently, if µ⌃� = M⌃+�E <⇠ 1290 MeV, that
is, �E <⇠ 100 MeV, then the ⌃�, and hence the strange
quark, will play a role in the dense medium. We find
using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at
⇢n = 0.4 fm�3. Corrections due to correlations among
neutrons are di�cult to estimate and will require many-
body calculations which are beyond the scope of this
study. Despite this caveat, the results shown in Fig. 3
indicate that the repulsion in the n⌃� system is inad-
equate to exclude the presence of ⌃�’s in neutron star
matter, a conclusion that is consistent with previous phe-
nomenological modeling (for a review, see Ref. [49]).

In this letter, we have presented the first LQCD predic-
tions for hypernuclear physics, the 1S0 and 3S1 n⌃� scat-
tering phase shifts shown in Fig. 1 and Fig. 2. While the
LQCD calculations have been performed at a single lat-
tice spacing, lattice-spacing artifacts are expected to be
smaller than the other systematic uncertainties. We an-
ticipate systematically refining the analysis presented in
this letter as greater computing resources become avail-
able. The n⌃� interaction is critical in determining the
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FIG. 1: LQCD-predicted 1S0 n⌃� phase shift versus labo-
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compared with other determinations, as discussed in the text.
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FIG. 2: LQCD-predicted 3S1 n⌃� phase shift versus labo-
ratory momentum at the physical pion mass (blue bands),
compared with other determinations, as discussed in the text.

tor, thereby determining the LO interaction, including
energy-independent and local potentials, wavefunctions
and phase shifts, at the physical pion mass.
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binding energy. We find that this channel becomes un-
bound at m⇡

<⇠ 300 MeV, in agreement with Ref. [46],
which constrained the LO contact operator using exper-
imental data. In Fig. 1, we show the predicted 1S0 n⌃�

phase shift at the physical pion mass — (dark, light) blue
bands correspond to (statistical, systematic) uncertain-
ties — and compare with the EFT constrained by ex-
perimental data [23], the Nijmegen NSC97f model [14],
and the Jülich ’04 model [18]. The systematic uncer-
tainties on our predictions include those arising from the
LQCD calculation (see [45]) as well as estimates of omit-

ted higher-order e↵ects in the EFT.
The 3S1-3D1 n⌃� coupled channel is found to be highly

repulsive in the s-wave at m⇡ ⇠ 389 MeV, requiring in-
teractions with a hard repulsive core of extended size.
Such a core, if large enough, would violate a condition re-
quired to use Lüscher’s relation, namely R ⌧ L/2 where
R is the range of the interaction. We have determined
the EFT potential directly by solving the 3-dimensional
Schrödinger equation in finite volume to reproduce the
energy levels obtained in the LQCD calculations. The re-
pulsive core is found to be large, and formally precludes
the use of Lüscher’s relation, but both methods lead to
phase shifts that agree within uncertainties, indicating
that the exponential corrections to Lüscher’s relation are
small. In Fig. 2, we show the predicted 3S1 n⌃� phase
shift at the physical pion mass.
The n⌃� interactions presented here are the crucial

ingredient in calculations that address whether ⌃�’s ap-
pear in dense neutron matter. As a first step, and in order
to understand the competition between attractive and re-
pulsive components of the n⌃� interaction, we adopt a
result due to Fumi for the energy shift due to a static
impurity in a non-interacting Fermi system [47]:
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where µ is the reduced mass in the n⌃� system. Us-
ing our LQCD determinations of the phase shifts, and
allowing for a 30% theoretical uncertainty, the resulting
energy shift and uncertainty band is shown in Fig. 3. At
neutron number density ⇢n ⇠ 0.4 fm�3, which may be
found in the interior of neutron stars, the neutron chem-
ical potential is µn ⇠ MN + 150 MeV due to neutron-
neutron interactions, and the electron chemical potential,
µe� ⇠ 200 MeV [48]. Therefore µn + µe� ⇠ 1290 MeV,
and consequently, if µ⌃� = M⌃+�E <⇠ 1290 MeV, that
is, �E <⇠ 100 MeV, then the ⌃�, and hence the strange
quark, will play a role in the dense medium. We find
using Fumi’s theorem that �E = 46 ± 13 ± 24 MeV at
⇢n = 0.4 fm�3. Corrections due to correlations among
neutrons are di�cult to estimate and will require many-
body calculations which are beyond the scope of this
study. Despite this caveat, the results shown in Fig. 3
indicate that the repulsion in the n⌃� system is inad-
equate to exclude the presence of ⌃�’s in neutron star
matter, a conclusion that is consistent with previous phe-
nomenological modeling (for a review, see Ref. [49]).

In this letter, we have presented the first LQCD predic-
tions for hypernuclear physics, the 1S0 and 3S1 n⌃� scat-
tering phase shifts shown in Fig. 1 and Fig. 2. While the
LQCD calculations have been performed at a single lat-
tice spacing, lattice-spacing artifacts are expected to be
smaller than the other systematic uncertainties. We an-
ticipate systematically refining the analysis presented in
this letter as greater computing resources become avail-
able. The n⌃� interaction is critical in determining the



Lattice QCD potentials?

• HALQCD collaboration determine a Bethe-Salpeter (BS) 
wavefunction from QCD correlation functions

 

• Satisfies Schrödinger equation

• Invert Schrödinger equation to obtain a potential
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Lattice QCD potentials?

• Potential is energy dependent: only guaranteed to reproduce 
phase shift at the energy of the NN system in the calculation

• Potential is dependent on choice of sink operators

• Complicated analysis in the presence of statistical uncertainty 

• Serious issues with excited states and finite volume effects

• Caveat emptor!



Dibaryon systems
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Dibaryon systems

• Lightest stable nucleus is the deuteron

• Only bound A=2 system observed

• Almost not a nucleus

• Other dibaryons : H (ΛΛ), ΞΞ, ...

• Perhaps have different structure

• NB: at unphysical quark masses 
and no electroweak interactions



Bound states at finite volume

• Two particle scattering amplitude in infinite volume

bound state at                when

• Scattering amplitude in finite volume (Lüscher method)

• Need multiple volumes

• More complicated for n>2 body bound states

cot �(i) = i� i
X

~m6=0

e�|~m|L

|~m|L

A(p) =

8⇡

M

1

p cot �(p)� ip

cot �(i�) = ip2 = ��2


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Ex: H dibaryon

• First dibaryon bound state calculated in QCD [NPLQCD 2009]

• Multiple volumes needed to disentangle bound state from 
attractive scattering state

243x48 323x48 483x64

2MΛ



Dibaryons

• H dibaryon, di-neutron and deuteron

• More exotic channels also considered (ΞΞ and ΩΩ)

• Clearly more work needed at lighter masses
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Dibaryons

• H dibaryon, di-neutron and deuteron

• More exotic channels also considered (ΞΞ and ΩΩ)

• Clearly more work needed at lighter masses
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• Many baryon correlator construction is messy 
and expensive

• Techniques learnt in many-pion studies
[WD & M. Savage; WD,, K Orginos, Z. Shi]

• New tricks 
[T. Doi & M. Endres.; WD, K Orginos; Gunther et al]

• Enables study of few (and many) baryon systems

• NPLQCD collaboration study

• Unphysical SU(3) symmetric world @ msphys

• Multiple big volumes, single lattice spacing

Many baryon systems

. . 
. . 

. .

. . 
. . 

. .



Hypernuclei



Nuclei (A=2)

NPLQCD arXiv:1206.5219



Nuclei (A=2)
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Nuclei (A=3,4)

NPLQCD arXiv:1206.5219



Nuclei (A=3,4)

NPLQCD arXiv:1206.5219
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FIG. 13: The bound-state energy levels in the J⇡ = 3

2

+

3

⌃

He sector. The points and their associated
uncertainties correspond to the energies of the states extracted from the correlation functions with
the quantum numbers of the ground state of 3

⌃

He. The locations of the energy-levels associated
with non-interacting continuum states, determined from the two-body binding energies given in
Table VII, are shown.

which greatly reduces the complexity of individual correlation functions. In order to restrict
ourselves to systems that are currently of phenomenological importance, we explore systems
containing up to two strange quarks only, the isosinglet 4He, the iso-doublet 4

⇤

H and 4

⇤

He,
the isosinglet 4

⇤⇤

H and the isotriplet 4

⇤⇤

He, 4

⇤⇤

H, and nn⇤⇤.

A. I = 0 : 4He

In nature, the 4He nucleus is anomalously deeply bound when compared to nuclei nearby
in the periodic table due to its closed shell structure, with a total binding energy of B↵ ⇠
28 MeV, or a binding energy per nucleon of B/A ⇠ 7 MeV. We anticipate that at the SU(3)
symmetric point, the binding energy of 4He will be even deeper given the bindings of the
deuteron and di-neutron found in the two-body sector. Two of the 4He correlation functions,
resulting from di↵erent source structures defined by s = 0, I = 0 and J⇡ = 0+ quantum
numbers, transform as an element of the 28 irrep of SU(3), as determined by the action of
the SU(3) Casimir operators presented in Appendix A. 8 EMP’s of one of these correlation
functions are shown in fig. 14, from which the energies of the lowest lying states have been

8 The 28 is the only allowed I = 0, s = 0, A=4 irrep.
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• Empirically investigate volume dependence

• Need to ask if this is a 2+1 or 3+1 or 2+2 etc scattering state



Nuclei (A=2,3,4)

NPLQCD arXiv:1206.5219
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d, nn, 3He, 4He

• PACS-CS: bound d,nn, 3He, 4He

• Previous quenched work

• Recent unquenched study at 
mπ=500 MeV

• HALQCD 

• Extract an NN potential

• Strong enough to bind H, 4He at 
mPS=490 MeV SU(3) pt

• d, nn not bound
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FIG. 1: Nucleon effective mass on (5.8 fm)3 box in lattice unites. Fit result with one standard

deviation error band is expressed by solid lines.
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FIG. 2: Effective energy shift ∆Eeff
L for 4He channel on (5.8 fm)3 box in lattice units. Fit result

with one standard deviation error band is expressed by solid lines.
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FIG. 3: Spatial volume dependence of ∆EL in GeV units for 4He channel. Outer bar denotes

the combined error of statistical and systematic ones added in quadrature. Inner bar is for the

statistical error. Extrapolated result in the infinite spatial volume limit is shown by filled square

symbol together with the fit line (dashed). Experimental value (star) and quenched result (open

diamond) are also presented.
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Nuclei (A=4, 8, 12,...)

WD, Kostas Orginos,1207.1452

Quark-quark determinant based contraction method

(low statistics, single volume)



Nuclei (A=4, 8, 12,...)
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Nuclei (A=4, 8, 12,...)
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Nuclei (A=4, 8, 12,...)

0 10 20 30 40
-100

-50

0

50

100

têa

lo
g 1
0C
HtL

12C HSPL

WD, Kostas Orginos,1207.1452

Quark-quark determinant based contraction method

(low statistics, single volume)



Nuclei (A=4, 8, 12,...)
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Nuclei (A=4, 8, 12,...)

0 10 20 30 40

-200

-100

0

100

200

têa

lo
g 1
0C
HtL

28Si HSPL

WD, Kostas Orginos,1207.1452

Quark-quark determinant based contraction method

(low statistics, single volume)



QCD Nuclei (s=0,-1)
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FIG. 8: Summary of the results obtained in n
f

= 2 + 1 or n
f

= 3 lattice QCD calculations of
the binding energies of 3He, 3

⇤

H, 4He and 4

⇤

He. The red circles correspond to the physical binding
energies (for 4

⇤

He experimental determinations of both iso-doublet states are shown). For 3

⇤

He,
both J = 1/2 and 3/2 states were extracted, with the higher spin state being more tightly bound
for this SU(3)

f

symmetric quark mass.

Using two body potentials extracted from LQCD, and solving the three- and four-body
Schrödinger equations, the HALQCD collaboration have also investigated few-body systems
[90]. As noted in this study, this approach neglects three- and four- body interactions, but
provides an interesting guide as higher body forces are expected to be small. Indeed, the
two-body interaction alone is su�cient to bind the 4He state at SU(3)-symmetric quark
masses where the pion masses are in the range 500 MeV < m

⇡

< 1200 MeV.
The improved contraction methods discussed above have also enabled the construction

of correlation functions with the quantum numbers of significantly larger nuclei such as
8Be, 12C, 16O and 28Si [174], opening the way for studies of these systems. Examples of
these correlations are shown in Fig. 11, and, while the correlators for A < 20 show signs of
the expected approach to single exponential behaviour, no statistically meaningful binding
energies could be extracted at the statistical precision used in this preliminary investigation.
Indeed, it appears that the noise is becoming exponentially worse (with a small prefactor)



QCD Periodic Table
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Nuclear sigma terms

• Previous work suggested scalar dark matter couplings to nuclei 
have O(50%) uncertainty arising from MECs [Prezeau et al 2003]

• Quark mass dependence of nuclear binding energies bounds 
such contributions 

• Lattice calculations + physical point suggest such 
contributions are O(10%) or less for light nuclei

• Admittedly crude approximation to derivative ... stay tuned

TABLE II: Contributions to the nuclear �-terms of the deuteron, 3He and 4He. The binding energy
contributions, �BZ,N , are derived from the nuclear binding energies determined from lattice QCD
calculations, shown in Table I. The quantity hm⇡i is the average pion mass over the interval
used to construct the finite-di↵erence estimate of the nuclear �-term. The single-nucleon �-term
contribution, A�N , is taken from the approximate empirical relation A�N = Aa1m⇡/2, as defined
in the text (with uncertainties determined from the covariance matrix of the two-parameter fit
[57]). The first uncertainty of each quantity is statistical, the second is systematic and the third
(where present) is the additional systematic associated with the relation between the pion mass
and the light-quark mass.
hm⇡i (MeV) Quantity d 3He 4He

325 A�N (MeV) 322(9)(32) 483(13)(48) 644(17)(64)
325 �BZ,N (MeV) �4.08(48)(26)(41) �5.5(1.8)(0.9)(0.6) �6.5(5.3)(3.5)(0.7)
325 ��Z,N �0.0125(15)(08) �0.0113(36)(18) �0.0099(81)(54)
658 A�N (MeV) 652(18)(65) 978(26)(98) 1304(35)(130)
658 �BZ,N (MeV) �9.1(3.7)(4.6)(0.9) �50.8(8.0)(7.0)(5.1) �75(26)(19)(8)
658 ��Z,N �0.0139(56)(70) �0.0515(81)(71) �0.057(20)(14)
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FIG. 4: The nuclear contributions to the deuteron (left panel), 3He (middle panel) and 4He (right
panel) �-terms from nuclear interactions. The inner and outer shaded regions correspond to the
statistical and total (statistical combined with systematic) uncertainties, respectively.

the nuclear �-terms of the deuteron, 3He and 4He are shown in Fig. 5. For each nucleus,
the nuclear interactions modify the �-term by less than 10% of the impulse approximation
contribution for both pion masses considered, and by less than 2% at the lighter pion mass,
as can be seen in Fig. 6.
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(two-flavor) nuclear �-term can be written as

�Z,N = A�N + �BZ,N = A�N � m⇡

2

d

dm⇡
BZ,N , (11)

where

�N = mhN | uu + dd |Ni = m
d

dm
MN =

m⇡

2

d

dm⇡
MN (12)

is the nucleon �-term and |Ni is the single-nucleon state. The first term in Eq. (11) is the
noninteracting single-nucleon contribution to the nuclear �-term, while the second term cor-
responds to the corrections due to interactions between the nucleons, including the possibly
enhanced contributions from MECs. It is useful to define the ratio

��Z,N = � 1

A�N

m⇡

2

d

dm⇡
BZ,N (13)

to quantify the deviations from the impulse approximation. In addition to representing de-
viations of nuclear �-terms from the impulse approximation, this quantity also describes the
deviation of the scalar-isoscalar WIMP-nucleus scattering matrix element from the impulse
approximation at zero momentum transfer,

��Z,N =
hZ,N(gs)| uu + dd|Z,N(gs)i

A hN | uu + dd|Ni � 1 . (14)

III. LIGHT NUCLEI FROM LATTICE QCD AND THEIR �-TERMS

Lattice QCD has evolved to the stage where the binding energies of the lightest nuclei and
hypernuclei have been determined at a small number of relatively heavy pion masses in the
limit of isospin symmetry. Further, the mass of the nucleon has been explored extensively
over a large range of light-quark masses, with calculations now being performed at the phys-
ical value of the pion mass. These sets of calculations, along with the experimental values
of the masses of the light nuclei, are su�cient to arrive at a first QCD determination of the
nuclear �-terms for these nuclei at a small number of pion masses. This work provides an es-
timate of the modifications to the impulse approximation for scalar-isoscalar WIMP-nucleus
interactions in light nuclei2. In particular, these results can be used to explore the conjec-
tured enhancement of MEC contributions to these interactions, and to investigate the size of
the uncertainties introduced by the use of the impulse approximation in phenomenological
analyses.

The binding energies of the deuteron, 3He and 4He at pion masses of m⇡ ⇠ 390, 510
and 806 MeV calculated with lattice QCD [36–38, 54, 55] are presented in Table I, along
with their values at the physical point, and are shown in Fig. 2. The binding energies
per nucleon are shown in Fig. 3. The lattice QCD calculations were performed with clover-
improved discretizations of the quark fields. The m⇡ ⇠ 806 MeV calculations were performed

2 The EFT description of the quark-mass dependence of the nuclear forces has been developed in Refs. [45–
48]. For estimates of nuclear � terms, see Refs. [49–53].
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The road ahead...

• What does the future hold?

• Physical quark masses, isospin breaking, E&M

• Precision YN, YY phase shifts

• p-shell and larger nuclei

• Three body information: nnn, YNN, ...

• Properties of light nuclei (moments/structure) and 
electroweak interactions

• Nuclear reactions(?): eg d+d in 4He channel 
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NN fine tuning
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FIG. 11: The NN e↵ective range in the 1S0 channel (left panel) and the 3S1 channel (right panel).
The inner (outer) shaded region corresponds to the statistical uncertainty (statistical and systematic
uncertainties combined in quadrature) in a two-parameter fit to the results of the Lattice QCD
calculation and the experimental value.

VI. FINE TUNINGS AND SU(4) SPIN-FLAVOR SYMMETRY

At the physical values of the quark masses, the deuteron is an interesting system as it is
much larger than the range of the nuclear force. Its binding energy is determined by the pole
in the scattering amplitude in the 3

S1 �3
D1 coupled channels. It is known very precisely at

the physical light-quark masses, B

d

= 2.224644(34) MeV, and recently LQCD calculations of
the deuteron binding have been performed at unphysical light-quark masses [8, 11, 13, 14].
Given that both the scattering lengths and e↵ective ranges calculated in this work are
large compared with the pion Compton wavelength (which naively dictates the range of the
interaction for light pions), we explore the naturalness of the two-nucleon systems. In this
context, naturalness is defined by the length scales of the system as compared to the range
of the interaction. By contrast, a fine-tuned quantity is one in which the length scales of
the system are unnatural over a small range of parameters of the underlying theory.
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FIG. 12: The left panel shows the ratio of the scattering length to e↵ective range in the 3S1

channel. The right panel shows the normalized deuteron binding momentum versus the pion
mass [8, 11, 13, 14]. The black point denotes the experimental value.
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The left panel of fig. 12 gives the ratio of the scattering length to e↵ective range in the
3
S1 channel as a function of the pion mass. As the e↵ective range is a measure of the
range of the interaction, this figure reveals that the deuteron is becoming more natural at
heavier light-quark masses. In the right panel of fig. 12, the deuteron binding momentum
�

d

(related to the binding energy by B

d

= �

2
d

/M

N

) normalized to the pion mass is shown
as a function of the pion mass. In the chiral regime one would expect that that �

d

scales
as m

2
⇡

as suggested by e↵ective field theory [44–51]. However, at the heavy up and down
quark masses used here, naive expectations based on the uncertainty principle suggest that
the deuteron binding momentum, if natural, would scale roughly as the inverse of the range
of the interaction. As the ratio of �

d

to m

⇡

as a function of m

⇡

is not constant, but rather
is falling, we conclude that pion exchange is no longer the only significant contribution to
the long-range component of the nuclear force, consistent with the meson spectrum found
at these quark masses.

While more precise calculations at these quark masses are desirable, and LQCD cal-
culations at other light-quark masses and at other lattice spacings are required to make
definitive statements, the present calculations suggest that the deuteron remains unnatural
over a large range of light-quark masses. This would imply that the unnaturalness of the
deuteron binding energy at the physical point is a generic feature of QCD with three light
quarks and does not result from a fine-tuning of their masses. If subsequently confirmed,
this would be a very interesting result.
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FIG. 13: The left panel shows the ratio of the scattering length to e↵ective range in the 1S0

channel. The right panel shows the normalized di-neutron binding momentum versus the pion
mass [8, 11, 13, 14].

The 1
S0 channel is unnatural at the physical point with a very large scattering length,

but the system appears to be more natural at heavier pion masses. Nonetheless, as shown in
fig. 13 (left panel), the scattering length is approximately twice the e↵ective range at a pion
mass of m

⇡

⇠ 800 MeV, similar to the 3
S1 channel. In the right panel of fig. 13, the di-neutron

binding momentum �

nn

(related to the binding energy by B

nn

= �

2
nn

/M

N

) normalized to the
pion mass is shown as a function of the pion mass. As in the 3

S1 channel, it appears that
the pion is not providing the only significant contribution to the long-range component of
the nuclear force. However, in contrast to the 3

S1 channel, the 1
S0-channel is clearly finely-

tuned at the physical light-quark masses. The range of light-quark masses over which it is
fine-tuned requires further LQCD calculations to determine, and eventual consideration of
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SU(3) symmetric world

• In flavour SU(3) symmetric case, multi-baryon states come in 
multiplets

• Unphysical symmetries manifest in spectrum

L + L + p + p

LL + p + p

pp + L + L

pLH1s0L + p + L
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FIG. 17: The bound-state energy levels in the J⇡ = 0+ 4

⇤⇤

He ( 4

⇤⇤

H and nn⇤⇤) sector. The
points and their associated uncertainties correspond to the energies of the states extracted from
the correlation functions with the quantum numbers of the ground state of 4

⇤⇤

He. The excited
state of the 4

⇤⇤

He , in the 28, has the same energy as the ground state of 4He. The locations of
the energy-levels associated with non-interacting ⇤-3

⇤

He, N⇤-N⇤, H-dibaryon-di-nucleon, N⇤-N-⇤,
di-nucleon-⇤-⇤, H-dibaryon-N-N, and ⇤-⇤-N-N continuum states, determined from the two-body
binding energies given in Table VII and the three-body energies given in eq. (9) and eq. (12), are
shown.

identify this as the ground state of the 4

⇤⇤

He, 4

⇤⇤

H, nn⇤⇤ isotriplet. However, it is possible
that this is an excited state of the nucleus, with irreps other than the 28 and 27 containing
a lower energy state. Further, it is also possible that this state is a continuum scattering
state associated with N+ 3

⇤⇤

H. Clearly, further calculations are required to unambiguously
distinguish the energy of the 27 ground state from that of the 28 excited state.

VII. FIVE-BODY SYSTEMS

There are a plethora of five-body systems that can be explored theoretically at the SU(3)
symmetric point, dictated, in part, by the product of five 8’s,

8⌦ 8⌦ 8⌦ 8⌦ 8 = 32 1� 145 8� 100 10� 100 10� 180 27� 20 28� 20 28

� 100 35� 100 35� 94 64� 5 80� 5 80� 36 81� 36 81

� 20 125� 4 154� 4 154� 216 . (17)

25

can be straightforwardly constructed as

8⌦ 8⌦ 8 = 64� 2 35� 2 35� 6 27� 4 10� 4 10� 8 8� 2 1 . (6)

However, the local sources constructed from only the upper-components of the quark fields
produce correlation functions containing a subset of these irreps,

8⌦ 8⌦ 8 ! 35� 35� 2 27� 10� 10� 2 8� 1 , (7)

and further decomposition into states with J⇡ = 1

2

+

and J⇡ = 3

2

+

gives

( 8⌦ 8⌦ 8 )J⇡
=1/2+ ! 35� 35� 27� 8

( 8⌦ 8⌦ 8 )J⇡
=3/2+ ! 27� 10� 10� 8� 1 . (8)

It is clear from the SU(3) irreps contributing to the three-body systems that, with our
source structure, a given correlation function contains contributions from multiple SU(3)
irreps. With a relatively small number of states identified with the present set of correlation
functions, the SU(3) classification of states is di�cult to establish from the spectra alone.
More generally, it is expected that the spectrum of states in any given correlation function
becomes increasingly complicated with increasing numbers of baryons even when constrained
by SU(3) flavor symmetry. As the focus of this work is systems containing only a small
number of strange quarks, we have chosen to use the same notation as in hypernuclear
spectroscopy. States in 3He (same as 3H by isospin symmetry), 3

⇤

He (same as 3

⇤

H and nn⇤
by isospin symmetry), the isosinglet 3

⇤

H, and the isotriplet 3

⌃

He have been identified in the
three-body sector.

Correlation functions calculated with LQCD will not only contain contributions from
ground state and excited states of the bound nuclei, but also continuum states that con-
sist of all possible sub-clusterings of the baryons. For instance, the correlation functions
used to extract the 3He nuclear states will also contain contributions from the deuteron-
proton, di-proton-neutron in addition to the proton-proton-neutron continuum states. With
su�cient precision in the calculation, one will be able to use these levels to extract, for
instance, the deuteron-proton scattering phase-shift [24]. Given that the two-body sector is
well-established, the spectrum of such continuum states can be approximately constructed.
Clearly, states of the 3He nucleus can only be cleanly identified when they are not close in
energy to the expected location of non-interacting continuum states. The generalization of
this discussion applies to other systems comprised of three or more baryons. In Appendix B,
an example of the expected finite volume scattering state spectrum is constructed for each
of the volumes that are used in this analysis, demonstrating the extent of this problem in
large volumes.

A. I = 1

2

: 3H and 3He

In nature, the I = 1

2

, J⇡ = 1

2

+

ground state of the 3He nucleus is the only bound state of two
protons and a neutron, and it is known to be dominantly composed of two protons in a 1S

0

state coupled to a s-wave neutron. Four 3He correlation functions, resulting from di↵erent
source structures defined by s = 0, I = 1

2

and J⇡ = 1

2

+

quantum numbers transforming
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to be unity in calculations performed with isotropic lattices. Fitting ⇠H to the energy of the
pion and baryon, given in Table III and Table IV, respectively, yields ⇠⇡ = 1.0120(32)(18) and
⇠B = 1.014(11)(02). Therefore, the dispersion relations are known with su�cient precision
to provide only a small uncertainty in the extraction of multi-hadron energies.

IV. TWO-BODY SYSTEMS

In general, the two-body states can be classified by isospin, strangeness, parity and angular
momentum. In the limit of SU(3) flavor symmetry, the energy eigenstates can also be
classified by SU(3) quantum numbers. The lowest-lying baryons transform as 8 under SU(3),
and therefore the two-body states have degeneracies determined by the dimensionality of
the irreps in the product,

8⌦ 8 = 27� 10� 10� 8S � 8A � 1 . (4)

As the wave-function of such systems is totally antisymmetric, the s-wave 1S
0

channels
transform under SU(3) as 27 � 8S � 1, while the 3S

1

-3D
1

coupled channels transform as
10� 10� 8A. The source structures we have employed, in which the quark-level operators
reside at one point in the spatial volume, have vanishing overlap with the 8S irrep, and
as a result, we are unable to determine the energy of this two-body irrep. Correlation
functions are not constructed directly in terms of their SU(3) transformation properties, but
the contributing SU(3) irreps can be deduced from their structure: 10 from the deuteron,
27 from the di-nucleon, 1� 27 from the H-dibaryon (the 8S is absent), 10 from n⌃� in the
3S

1

-3D
1

coupled channels, and 8A from I = 0 N⌅ in the 3S
1

-3D
1

coupled channels. EMP’s
extracted from the two-body correlation functions for systems at rest calculated with the
483 ⇥ 64 ensemble are shown in fig. 4. The energies of states that are negatively shifted
relative to two free baryons are presented in Table V, Table VI and Table VII, respectively,
and displayed in fig. 5.

The energies of the states that are presented in this work, along with their statistical
uncertainties, are determined from a single parameter correlated �2-minimization procedure
performed over a specific time interval of EMP’s and from exponential fits to the correlation
functions directly, with covariance matrices determined with either Jackknife or Bootstrap.
The systematic uncertainty that is assigned to these energies is determined by varying the
fit interval over a range of values consistent with the identified plateau region. The full
range of the central values of the extracted energies is taken to represent the 3� range of
values of the systematic uncertainty, but we quote the 1� value rather than the 3� value
in order to make combining the systematic and statistical uncertainties in quadrature more
transparent.

A number of scattering states with positive energy-shifts relative to two free baryons have
also been identified using di↵erent correlation functions, but their uncertainties are large
enough to preclude clean extraction of scattering phase-shifts using Lüschers method [35, 36],
and we defer analysis of these states to a later time when adequate statistics have been
accumulated.

In su�ciently large volumes, the binding momentum associated with a two-body bound
state at rest in the lattice volume will scale as

(L) = 
0

+
6Z2

 

L
e�0L + ... , (5)

9

TABLE XII: The calculated bound state energies in J⇡ = 3

2

+

3

⌃

He. “g.s.” denotes the ground
state.

3

⌃

He 243 ⇥ 48 323 ⇥ 48 483 ⇥ 64

g.s. (MeV) 60(10)(5) 53(7)(5) 59(10)(5)

ground-state wavefunction is pn⌃, where the nucleons couple to I = 0, J = 1, as in 3

⇤

H. As
yet, the only observed ⌃ hypernucleus is 4

⌃

He (ppn⌃0) [47, 48], but at the SU(3) point it is
possible that this three-body system binds. The sources used to generate this correlation
function transform as 27 under SU(3), 7 and result in EMP’s that exhibit clear plateaus.
The ground state energies extracted from the three ensembles are given in Table XII, and
the associated EMP’s are shown in fig. 12. The ground state energy and the anticipated
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FIG. 12: The EMP’s associated with one J⇡ = 3

2

+

3

⌃

He correlation function computed with the
243 ⇥ 48 (left), 323 ⇥ 48 (center) and 483 ⇥ 64 (right) ensembles, with momentum |P| = 0. The
shaded regions corresponds to the statistical uncertainty associated with the shown fitting interval.

continuum thresholds based upon the non-interacting two-body energies are shown in fig. 13.

VI. FOUR-BODY SYSTEMS

There are a large number of four-body systems and states that could be explored theoretically
with LQCD at the SU(3) symmetric point, dictated by the product of four 8’s,

8⌦ 8⌦ 8⌦ 8 = 8 1� 32 8� 20 10� 20 10� 33 27� 2 28� 2 28� 15 35� 15 35

� 12 64� 3 81� 3 81� 125 , (13)

giving a total of 166 lowest-lying states (one per distinct irrep) with distinguishable quantum
numbers. The local sources that have been used in this work to generate correlation functions
project onto a subset of the irreps,

( 8⌦ 8⌦ 8⌦ 8 )J⇡
=0

+ ! 1� 27� 28

( 8⌦ 8⌦ 8⌦ 8 )J⇡
=1

+ ! 8� 10� 10� 35

( 8⌦ 8⌦ 8⌦ 8 )J⇡
=2

+ ! 8� 27 , (14)

7 This 27 irrep is di↵erent from that in the J⇡ = 1
2

+
channel. In principle the ground state of the system

could reside in the 64 irrep, but this is not accessible with our present operator structure.
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H-dibaryon

• R Jaffe [1977]: chromo-magnetic interaction 

most attractive for spin, colour, flavour singlet

• H-dibaryon (uuddss) J=I=0, s=-2 most stable

• Bound in a many hadronic models

• Experimental searches

• Emulsion expts, heavy-ion, stopped kaons

• No conclusive evidence for or against 

hHmi ⇠
1
4
N(N � 10) +

1
3
S(S + 1) +

1
2
C2

c + C2
f

 H =
1p
8

⇣
⇤⇤+

p
3⌃⌃+ 2⌅N

⌘
KEK-ps (2007) 

K- 12C →K+ ΛΛ X 



H dibaryon in QCD

• Early quenched studies on small lattices: mixed results 
[Mackenzie et al. 85,  Iwasaki et al. 89,  Pochinsky et al. 99,  Wetzorke & Karsch 03, Luo et al. 07, Loan 11]

• Semi-realistic calculations 

• “Evidence for a bound H dibaryon from lattice QCD”
PRL 106, 162001 (2011) 
Nf=2+1,   as=0.12 fm,   mπ=390 MeV,   L=2.0, 2.5, 3.0, 3.9 fm

• “Bound H dibaryon in flavor SU(3) limit of lattice QCD”  *
PRL 106, 162002 (2011) 
Nf=3,   as=0.12 fm,   mπ=670, 830, 1015 MeV,   L=2.0, 3.0, 3.9 fm

• NB: Quark masses unphysical, single lattice spacing

* use a somewhat different method



• Extract energy eigenstates from large Euclidean time 
behaviour of two-point correlators

• Correlator ratio allows direct access to energy shift

H dibaryon in QCD
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of m⇥ ⇤ 389
MeV, a spatial lattice spacing of bs ⇤ 0.1227(8) fm,
an anisotropy factor of ⌅t = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ⇤
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, ⇥. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, �E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

�E(AB)
n = 2

p
q2n/⌅

2
t +m2 � 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot ⇥(qn) =
1

⇧ L
S

 
q2n

✓
L

2⇧

◆2
!

, (1)

where the S-function is given by

S(x) = lim
�⇥⇤

|j|<�X

j

1

|j|2 � x
� 4⇧ ⇥ , (2)

thereby implicitly determining the value of the phase

shift at the energy �E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two di⇤erent lattice volumes
that both have q20 < 0 and q0 cot ⇥(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = i⇤ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

⇤ = � +
1

L
c1
⇣
e��L +

⌃
2 e�

⌅
2�L

⌘
+ ... , (3)

where � is the infinite-volume value of the binding mo-
mentum, under the assumption that � ⌅ m⇥, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give �, from which
the binding energy of the state is B = �2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that m⇥L ⇧ 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e�m⇡L. In principle,
in marginal volumes, one can use the low-energy e⇤ec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is su⌅ciently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The ⇥ mass, unlike that of the ⇧ and
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FIG. 1: Left panel: the mass of the � as a function of e�m⇡L

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the �. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the ⇥mass on the 163⇥128 ensemble (m⇥L = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 ⇥ 128 en-
semble is much less than that of the 163 ⇥ 128 ensemble,
but we choose not use calculations performed on either
the 163⇥128 or 203⇥128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 ⇥ 128 ensemble (m⇥L = 5.79) and on the 323 ⇥ 128
ensemble (m⇥L = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume e⇤ects, and
in particular, that m⇥L>⇤ 2⇧ ⇤ 6.3 for exponential vol-
ume e⇤ects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the

�E

M⇤
E⇤⇤

k2

3.0 fm 4.0 fm



• After volume extrapolation
H bound at unphysical quark 
masses

• Quark mass extrapolation is 
uncertain and unconstrained

other extrapolations possible
[Shanahan, Thomas & Young PRL. 107 (2011) 092004, 
Haidenbauer & Meissner 1109.3590]

• Suggests H is weakly bound or just 
unbound

Blin
H = +4.9± 4.0± 8.3 MeV

-0.2 -0.1 0

1.

0.6

0.2

Hq0êmpL2

-
ic
ot
HdL

3.0 fm

4.0 fm

“ ”

* 230 MeV point preliminary (one volume)

H dibaryon in QCD
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Deuteron

• Deuteron also 
investigated

• NPLQCD

• PACS-CS

• More work needed 
at lighter masses

[Yamazaki et al. 1207.4277]
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Hypernuclei

• Recent studies at SU(3) point (physical ms)

• Isotropic clover lattices 

• Single lattice spacing: 0.145 fm

• Multiple volumes: 3.4, 4.5, 6.7 fm

• High statisticsTABLE I: Parameters of the ensembles of gauge-field configurations and of the measurements used
in this work. The lattices have dimension L3 ⇥ T , a lattice spacing b, and a bare quark mass b mq

(in lattice units) generating a pion of mass m�. Nsrc light-quark sources are used (as described in
the text) to perform measurements on Ncfg configurations in each ensemble.

Label L/b T/b � b mq b [fm] L [fm] T [fm] m� [MeV] m� L m� T Ncfg Nsrc

A 24 48 6.1 -0.2450 0.145 3.4 6.7 806.5(0.3)(0)(8.9) 14.3 28.5 3822 48

B 32 48 6.1 -0.2450 0.145 4.5 6.7 806.9(0.3)(0.5)(8.9) 19.0 28.5 3050 24

C 48 64 6.1 -0.2450 0.145 6.7 9.0 806.7(0.3)(0)(8.9) 28.5 38.0 1212 32

each configuration. The quark propagators were constructed with gauge invariant Gaussian
smeared sources with stout-smeared gauge links. These sources are distributed over a grid,
the center of which is randomly distributed within the lattice volume on each configuration,
and the quark propagators are computed using the BiCGstab algorithm with a tolerance
of 10�12 in double precision. The quark propagators, and ones that are smeared at the
sink using the same smearing parameters as used at the source, give rise to two sets of
correlation functions for each combination of source and sink interpolating field, labeled as
SS and SP, respectively. The propagators are contracted to form baryon blocks projected
to fixed momentum at the sink for use in the calculation of the correlation functions to be
described below. The blocks are defined as

Bijk
H (p, t; x0) =

�

x

eip·xS(f1),i0

i (x, t; x0)S
(f2),j0

j (x, t; x0)S
(f3),k0

k (x, t; x0)b
(H)
i0j0k0 , (1)

where S(f) is a quark propagator of flavor f and the indices are combined spin-color indices
running over i = 1, . . . , NcNs.1 The choice of the fi and the tensor b(H) depend on the
spin and flavor of the baryon, H, under consideration. For our calculations we used the
local interpolating fields constructed in [31] restricted to those that contain only upper spin
components (in the Dirac spinor basis). This choice results in the simplest interpolating
fields that also have the best overlap with the single octet baryon ground states. Blocks are
constructed for all momenta |p|2 < 4 allowing for the study of multi-baryon systems with
zero or non-zero total momentum and with non-trivial spatial wave functions.

B. Multi-Baryon Interpolating Operators and Contractions

In order to construct correlation functions for the multi-hadron systems, interpolating op-
erators with well defined quantum numbers at the source and sink are constructed. As
we intend to perform calculations away from the SU(3) flavor symmetry limit at lighter
quark masses, the quantum numbers of parity �, angular momentum J2 and Jz, strangeness
s, baryon number (atomic number) A, and isospin I2 and Iz are used to define the in-
terpolating operators. 2 These interpolating operators are first constructed recursively at

1 To be specific, for a quark spin component is = 1, . . . , Ns and color component ic = 1, . . . , Nc, the

combined index i = Nc(is � 1) + ic.
2 For calculations restricted to the SU(3) flavor symmetric limit, it would also be advantageous to work

directly with SU(3) irreducible representations.
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[WD, HW Lin 1112.5682]

D. Kaplan  INT  6/5/09

Weak current processes: 

A new parameter appears in deuteron physics: 2-body axial charge

W±

gA=1.25

N

W±

N

N
L1

A=3.6±5.5 fm3

Friday, June 5, 2009



Nuclear properties

• Many phenomenologically important nuclear matrix elements

1. Axial coupling to NN system

• pp fusion: “Calibrate the sun” 

• Muon capture: MuSun @ PSI

• d ν → n n e+ : SNO 

2. Medium effects: eg EMC effect

• Proof of principle (pion PDF in pion gas) 
[WD, HW Lin 1112.5682]

• LQCD: not much harder than spectroscopy

D. Kaplan  INT  6/5/09

Weak current processes: 

A new parameter appears in deuteron physics: 2-body axial charge

W±

gA=1.25

N
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N

N
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Hyperon-nucleon interactions
• Observation of 1.97 M   n-star [Demorest et al., Nature, 2010]

“effectively rules out the presence of hyperons, bosons, or free quarks”

• Relies significantly on poorly known hadronic interactions at 
high density

• Hyperon-nucleon

• nnn, ...

• Calculable in QCD

• 30% determinations
would have impact

• Happening for YN
[NPLQCD PRL 109 (2012) 172001]



Many baryon systems

• Many baryon correlator construction is messy

• Interpolating fields – express weighted sums

• Generation of weights can be automated 
(symbolic c++ code) for given quantum numbers

• Specify final quantum numbers (spin, isospin, 
strangeness etc)

• Build up from states of smaller quantum numbers just by 
using rules of eg angular momentum addition

• Contraction just reads in weights and can be implemented 
independent of the particular process being considered
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i
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Doi and Endres 1205.0585]
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Many baryon systems

• Given a complex many baryon system to perform contractions for, 
always possible to group colour singlets at one end (sink)

• Contractions can be written in terms of baryon blocks (objects that 
are contracted at sink)

• A particular set of quantum numbers b for the block is select by a 
weighted sum of components of quark propagators

• Can be generalised to multi-baryon blocks if desired although storage 
requirements  rapidly increase
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Many baryon systems
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Many baryon systems
• Contractions
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Many baryon systems
• Contractions

• Make a particular choice of correlation function (momentum projection 
at sink) and express in terms of blocks (quark-hadron level contraction)
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Many baryon systems
• Contractions

• Make a particular choice of correlation function (momentum projection 
at sink) and express in terms of blocks (quark-hadron level contraction)
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Many baryon systems
• Contractions

• Make a particular choice of correlation function (momentum projection 
at sink) and express in terms of blocks (quark-hadron level contraction)
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We can generalise these blocks to allow the quark propagators to originate from di↵erent source locations,

x

(1)
0 , x

(2)
0 , . . ., as necessary, using
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(10)

where the x(k)
0 label the source locations. These blocks can be further generalised to allow for non-trivial single hadron

spatial wave-function at the sink, but we will not consider this case further. It may also be advantageous to consider
more complicated multi-hadron blocks similar to those implemented in Ref. [2] although the storage requirements
grow rapidly with number of baryons in the block.

B. Quark-hadron contractions

Using the building blocks described above, we can consider correlation functions in which quark level interpolating
fields are used at the source and their hadronic counterparts are used at the sink. The contractions are performed by
iterating over all combinations of source and sink interpolating field terms and connecting the source and sink with
the appropriate sets of quark propagators. For a given pair of source and sink interpolating field terms, this amounts
to selecting the components dictated by the source quark interpolating field from the product of blocks dictated by
the hadronic sink interpolating field. The Wick contractions are implemented by performing this selection in all
possible ways. This proceeds by taking the first hadron in the hadronic wave-function at the sink, replacing it by the
appropriate hadron block and selecting the three free indices in all possible ways from the pool of indices dictated
by the source quark interpolating field, keeping track of the appropriate permutation sign. Following this, the second
baryon component in the hadronic (sink) interpolating field term is replaced with the appropriate block and the free
indices are contracted with the remaining free indices in the source quark interpolating field term in all possible ways.
These first steps are illustrated in Fig. 1 and the procedure continues until all hadrons in the sink interpolating field
term have been contracted, necessarily using all available quark indices at the source. The result is then multiplied by

(a) (b)

FIG. 1: Illustration of steps one and two of the quark–hadron contraction method. The small circles in the left hand of
the figures correspond to the quarks in the source interpolating field while the large squares and lines extending from them
correspond to the hadronic blocks.

the weights of the source and sink terms under consideration and added to the correlation function. The contraction
is complete after all combinations of source and sink interpolating field terms have been considered. The process
described here is independent of the the source and sink interpolating fields and can be applied to any correlation
function. Further reductions of the total cost of the algorithm may be possible by studying the symmetry properties
of a particular pair of source-sink interpolating fields. However, such reductions are not generic, hence we do not

...

Stage 1 Stage 2

u quarks

d quarks

s quarks

hadron blocks
[WD, K Orginos,  1207.1452; ]



Many baryon systems
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Many baryon systems
• Contractions
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Many baryon systems
• Contractions

• Or write as determinant (quark-quark level contraction)

where
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Many baryon systems
• Contractions

• Or write as determinant (quark-quark level contraction)

where

• Determinant can be evaluated in polynomial number of operations 
(LU decomposition)
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