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ANCs and VCs 

 

 Asymptotic normalization coefficients (ANC) determine the 

asymptotics of nuclear wave functions in binary channels. ANCs are 

proportional to vertex constants (VC), which determine the processes  

A  B+C  and  are directly related to the residue at the pole of the BC 

scattering amplitude corresponding to the state A. VCs and ANCs 

are fundamental nuclear characteristics. They are used 

actively in analyses of nuclear reactions within various 

approaches.  

VCs and ANCs extracted from one process can be used for 

the prediction of characteristics of other processes. ANC for 

the channel A  B+C determines the probability of the 

configuration B+C in nucleus A at distances greater than the 

radius of nuclear interaction. 



It was shown (A.M.Mukhamedzhanov et al.) that the cross 
section of B(C,)A reaction at astrophysical energies with a 
good accuracy is determined by the value of the ANC in the 
B+C channel. This conclusion made it possible to calculate the 
astrophysical factor S(E=0) for a number of radiative capture 
processes. 

Usually ANCs are considered for bound states A. However, it 

is of interest to consider ANCs and VCs for resonance states 

as well. ANCs (VCs) are additional and independent 

characteristics of resonance states which cannot be 

expressed in terms of the position and the width of a 

resonance.  

   

Comparing empirical values of ANCs and VCs obtained from 

analyses of scattering data with theoretical ones enables one 

to evaluate the quality of a model.  



Analytic continuation of effective range 

expansion (ACERE) 

One of the most widespread methods of determining of ANCs 

(VCs) is the analytic continuation in energy of the data on the 

partial wave amplitude of elastic BC scattering to the pole 

corresponding to the state A. The most effective way of 

realization of this procedure is the analytic continuation of the 

effective range function KL (k
2). This method was used (L.B., 

V.I.Kukulin et al., L.B. and D.A.Savin) for the process 6Li →α 

+ d, by Yu.V.Orlov et al. for the systems 3H, 2;3;5He, 5Li, 8Be, 

and by J.-M.Sparenberg et al. for the systems 16O + n, 16O + 

p, and 12C + α. 



ACERE Method for Short-Range plus Coulomb 

Interaction 

 
 Method for Short-Range plus Coulomb Interaction In the one-channel case the total amplitude of scattering of particles 

B and C in the presence of the Coulomb interaction is written as the 

sum of the pure Coulomb and the Coulomb-nuclear amplitudes 
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                                  and         are the pure Coulomb and Coulomb-

nuclear scattering phase-shifts,                         is the Coulomb 

parameter. Coulomb interaction is taken to be repulsive. 
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The renormalized Coulomb-nuclear partial-wave amplitude  

is introduced as follows (Hamilton, LB-Mukhamedzhanov-Safronov, 

Orlov): 
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Analytic properties         on the physical sheet are analogous to those of 

a partial scattering amplitude for the short-range potential.       can be 

expressed through the Coulomb-modified effective-range function              

which is regular near zero and can be expanded in even powers of k. In 

the absence of the Coulomb interaction (η = 0)             

N

Lf
~

),( 2kKL

N

Lf
~

).(cot)( 122 kkkK L

L

L 

(2) 



If the system of colliding particles B + C in the considered 

channel possesses the bound state AAwith the binding energy                              

                , then the amplitude       possesses the pole at        .  

        . The residue at that pole is expressed in terms of the 

Coulomb-modified VC        and ANC CL.    
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where                             is the bound-state Coulomb parameter.        /2eZZ CBb 
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ANCs and VCs for the d + α system 

In the given work the ACERE method is applied to find 

characteristics of D resonances in the d + α  system and of 

the bound dα state 6Li (ground).  

Two sets of dα phase-shift data are used to find the 

parameters of ERE. 
 

A. Energy-independent phase-shift analysis [1,2] (Grüebler  

W., et al. // Nucl. Phys. A. 1975, 242, 245; Nucl. Phys. A. 

1983, 397, 61) made with account of channel coupling. 14 

energy points in the interval Ed = 3 - 8 MeV are used. 

B. Energy-dependent phase-shift analysis [3] (Krasnopol’sky 

 V.M., et al. // Phys. Rev. C. 1991, 43, 822) made 

  with neglect of channel coupling. 14 energy points in 

  the interval Ed = 0.872 - 5.24 MeV are used.  

 



Both sets indicate the existence of three resonances with 

L=2: 

D1 (J
π =1+), D2 (J

π =2+), D3(J
π =3+).  

 

Besides, there is the bound state 6Li (1+), which is a mixture 

of L=0 and L=2 states. 

D3 channel 



Fig.1 

(a) (b) 

Ed Ed 

δ(3+) δ(3+) 



Method  Er, MeV  , MeV  G
2

2 104, fm  C
2
, fm-1/2  

set  A  [1,2], 
version 1 

 1.458   0.082   17.8-2.4i   0.144+0.031i 

set  A  [1,2], 
version 2 

 0.690   0.024   12.0-0.99i   0.111+0.042i 

set  B [3]  0.704   0.025   12.30-1.01i   0.113+0.043i 

set  B [3], Breit–
Wigner 

 0.704   0.025   12.37+0.27i   0.110+0.048i 

 set  B [3] PA[1,1]   0.713   0.030   -   - 

 accepted values 
[4]  

 0.712 ±  0.002  0.024  ±  0.002  -   -  

Table 1: D3 channel  



It is possible to improve that result by including the 

resonance energy from [4] in the set of fitted quantities (see 

line 2 of Table 1).  

 

However, the better and more reliable results are obtained 

using the set B for which the lowest energy point     

(Ed = 0.872 MeV ) lies lower than the resonance energy 

(see Fig.1b and line 3 of Table 1). Note that the values of VC 

G2 and ANC C2 presented in lines 2 and 3 are rather close 

to each other and differ considerably from those in line 1. 



 

In line 4 of Table 1 we present the values of the ANC and VC 

calculated in the assumption that the resonance is of pure Breit-

Wigner type and narrow, that is 
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It is seen that these values are close to the exact ones, which 

means that the D3 resonance is really of the Breit-Wigner type. 



D2 channel 

In this channel there is a rather wide resonance above the 

three-particle threshold. Our results are shown in Fig.2 and 

Table 2. 

A B 

Fig.2 Ed 
Ed 

δ(2+) δ(2+) 



Method  Er, MeV  , MeV  G
2

2 104, fm  C
2
, fm-1/2  

 set  A  [1,2],   2.960   0.995   74.9- 67.5i   0.344-0.061i 

 set  B [3]  2.802   1.178   85.7 -88.3i   0.376 -0.078i 

 set  B [3], Breit–
Wigner 

 2.802   1.178   136.0 +24.4i   0.391 +0.114i 

accepted values 
[4]  

 2.838 ± 0.022  1.30 ± 0.1  -   -  

Table 2: D2 channel 

It is seen from Table 2 that the results for Er and Γ  

obtained using sets A and B are close to each other and to 

the values from [4].  

The ANCs and VCs for two sets are also not too different, 

however, they differ noticeably from Breit-Wigner results. 



D1 channel with neglecting the coupling with  S1 

channel 

Parameters of the D1 resonance are known with the worse 

accuracy than those for D2 and D3 resonances.  

Moreover, it is probable that the low-energy part of the set 

A of D1 phase shifts contains certain inconsistencies. The 

scattering function K2 (k
2) can be drawn smoothly either 

through two lowest energy points (version 1) or through 

the 3rd and 4th energy points (version 2).  The rest points 

could be described satisfactorily within both versions.  

 

In this channel there is a rather wide resonance above 

the three-particle threshold.  



D1 channel 

Since these two versions result in slightly different 

parameters of the D1 resonance, both versions are presented 

in Fig.3 and Table 3.  

Fig.3 Ed 
Ed 

δ(1+) δ(1+) 

A2 A1 



 -  

 -  

Method  Er, MeV  , MeV  G
2

2 104, fm  C
2
, fm-1/2  

set  A  [1,2], 
version 1 [1]  

 3.904  2.347   90.3- 147.9i   0.428-0.155i 

set  A  [1,2], 
version 1 [2]  

 4.039  2.345   113.6- 137.4i   0.445-0.128i 

set  A  [1,2], 
version 2 [1]  

 4.025   2.097   91.9 -125.6i   0.413 -0.131i 

set  A  [1,2], 
version 2 [2]  

 3.876   1.867   57.4 -114.4i   0.364 -0.148i 

 set  B [3]  3.864 2.616   87.96 -168.7i   0.442- 0.178i 

 set  B [3],  
Breit–Wigner 

 3.864 2.616   220.4 +58.5i   0.499+ 0.150i 

 accepted 
values [4]  

 4.18 ± 0.050  1.50 ±  0.2  -   -  

Table 3: D1 channel 



As it follows from Table 3, the Er values are within the 

experimental errors. The Γ value for the version 2 is 

closer to the accepted value. The ANC and VC values 

differ noticeably from Breit-Wigner results. 

 

Note that the set B was obtained with neglecting  

the S1-D1 coupling. 



Coupled S1-D1 channels 

In this section the ACERE method is used to describe 

simultaneously the D1 resonance and the bound state of 6Li 

(1+). The data of set A are used only since the analysis of 

set B was performed with neglect of S1-D1 coupling.  

 

The results are presented in Table 4. For brevity the values 

of ANCs only are shown. C0 and C2 correspond to the bound 

state and Cr0 and Cr2 correspond to the D1 resonance.  



Method  Er, MeV 
 

 , MeV  C
0
, fm-1/2   C

2
, fm-1/2   C

r0
, fm-1/2   C

r2
, fm-1/2  

set  A  [1,2], 
version 1 
[211]  

 3.900   2.347   1.960  -0.093   -0.024- 
0.014i  

 0.427-
0.156i 

set  A  [1,2], 
version 1 
[222] 

 4.055   2.343   2.441  -0.287   -0.024- 
0.014i  

 0.446-
0.123i 

set  A  [1,2], 
version 2 
[211] 

 4.022 2.098 1.867 -0.052   -0.0192 -
0.0156i  

 0.412 -
0.131i 

set  A  [1,2], 
version 2 
[222] 

 3.872 1.860 1.900  0.025   -0.0166 -
0.0058i  

 0.363 -
0.148i 

 accepted 
values [4]   

 4.18 ± 
0.050 

1.50 ± 0.2$      -   -  

Table 4: Coupled S1- D1 channels 



Note that the resonance parameters Er and Γ in Tables 3 

and 4 practically coincide. It means that the 

characteristics of the resonance are almost completely 

determined by the D1 state. The admixture of the S1 state 

at the resonance pole is negligible. 

 

On the other hand, C0 at the bound state pole is 

determined by the S1 state. C2 turns out to be sensitive to 

the details of the  D1 phase shift behavior. 



Conclusions 

The ACERE method is operable both for bound and 

resonant nuclear states.  

 

To get the more accurate values of ANCs and VCs for the 

d+α system it is desirable to measure more accurately the 

dα scattering differential cross section at low energies and to 

perform the thorough energy-dependent phase-shift analysis 

of the corresponding data. 

  



Thank   you 


