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What Can We Learn From Photo Reactions?

1 Understanding of the systems at hand.
2 A test of the Hamiltonian at regimes not accessible by elastic reactions.
3 Reaction rates as input for experiments or applications (e.g. astrophysics).
4 Underlying degrees of freedom.
5 The transition from single particle to collective behavior.
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Photo Reactions

The interaction Hamiltonian between the photon field A(x) and the
atomic/nuclear system

HI = −
e
c

∫
dxA(x) · J(x)

The current is a sum of convection and spin currents

J(x) = Jc(x) +∇× µ(x)

HI = −
e
c

∫
dx {A(x) · Jc(x) + B(x) · µ(x)}

00

(E  ,     )

P

Pffω

(E  ,     )

Classically, the convection current Jc = ∑i Qivi is the flow of the charged particles.

In nuclear physics, the convection current is dominant at low energies.

Ultracold atoms are neutral Jc(x) = 0 and the current µ(x) is dominated by the spins.
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Efimov Physics and Universality

Borromean regime: A 3-body bound state
exists even when the 2-body system is
unbound.

In nuclear physics, 6He is bound while
5He, n-n - not.

The unitary limit: E2 = 0, as −→ ∞.

In 1970 V. Efimov found out that if E2 = 0
the 3-body system will have an infinite
number of bound states.

The 3-body spectrum is En = E0e−2πn/s0

with s0 = 1.00624.

In atomic traps, as can be manipulated
through the Feshbach resonance.

Particle losses in traps are closely related to
Efimov’s physics through the 3-body
recombination process

A + A + A −→ A2 + A

F. Ferlaino and R. Grimm, Physics 3, 9 (2010)
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Photoassociation of Atomic Molecules

RF-induce atom loss resonances for different values of bias magnetic fields.

RF association of 7Li dimers and trimers at 1.5 µK
O. Machtey, Z. Shotan, N. Gross and L. Khaykovich, Phys. Rev. Lett. 108, 210406 (2012)
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The Static Response - Inelastic Reactions

The response of an A-particle system is closely related to the static moments of the charge
density

ρ(x) =
A

∑
i=1

Qiδ(x− ri)

The Fourier Transform
ρ(k) =

∫
dxρ(x)eik·x =

A

∑
i=1

Qieik·ri

In the long wavelength limit k −→ 0

For a system of identical particles

Conclusion A: In general the Dipole is the leading term.

Conclusion B: For identical particles the leading terms are M̂ and Q̂.
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Photo Reactions with Ultracold Atoms

For RF photons in the few MHz region the wave
length is meters so kR� 1.

The atoms reside in a strong magnetic field, with
well defined mF,

|Ψ0〉 = Φ0(ri)|m1
Fm2

F . . . mA
F 〉

In the final state the photon can either change one of
the spins or leave them untouched.

Spin-flip reaction

|m1
Fm2

F . . . mA
F 〉 −→ |m1

Fm2
F ± 1 . . . mA

F 〉

Frozen-Spin reaction

|m1
Fm2

F . . . mA
F 〉 −→ |m1

Fm2
F . . . mA

F 〉

N. Gross and L. Khaykovich,
Phys. Rev. A 77, 023604 (2008)
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Photo Reactions with Ultracold Atoms

For Spin-flip reactions the Franck-Condon factor dominates the transition

R(ω) = Ck
∫
∑
f ,λ

∣∣〈Φf |Φ0〉
∣∣2 δ(Ef − E0 −ω)

For Frozen-Spin reactions we get a sum of the monopole operator M̂ = R2 = ∑ r2
i

and the Quadrupole operator Q̂ = ∑ r2
i Y2(r̂i)

O = αM̂ + βQ̂

The response is given by

R(ω) = k5
∫
∑
f ,λ

∣∣〈Φf |O|Φ0〉
∣∣2 δ(Ef − E0 −ω)
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Photoassociation of the Atomic Dimer

For the dimer case, the response function can be written as

R(ω) = Cω5
[

1
62 |〈ψ0‖M̂‖ϕ0(q)〉|2 +

1
5 · 152 |〈ψ0‖Q̂‖ϕ2(q)〉|2

]
The bound state wave function is

ψ0 = Y0
√

2κe−κr/r ; κ ≈ 1/as

The continuum state wave function is

ϕlm(q) = Ylm(r̂)2q[cos δljl(qr)− sin δlnl(qr)]

The l = 0 matrix element

|〈ψ0‖M̂‖ϕ0(q)〉|2 =
1

4π

(
4q
√

2κ

(q2 + κ2)3

)2 [
cos δ0(3κ2 − q2)− sin δ0

κ

q
(3q2 − κ2)

]2

The ` = 2 matrix element, assuming δ2 = 0

|〈ψ0‖Q̂‖ϕ2(q)〉|2 =
5

4π

[
16q3
√

2κ

(q2 + κ2)3

]2
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Photoassociation of the Atomic Dimer

The s-wave and d-wave
components in the response
function

upper panel a/reff = 2

lower panel a/reff = 200

red - r2 monopole

blue - quadrupole

black - their sum
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Dimer Photoassociation Rates

Photoassociation of 7Li dimers
as = 1000a0
T = 25µK (upper panel)
T = 5µK (lower panel)

red - r2 monopole, blue - quadrupole, black - sum

The relative contribution to the peak
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Road-map for Efimov Physics

To get analytic results for the 3-body problem,

Assume short-range interaction and large scattering length

Remove center of mass and adopt the hyper-spherical coordinates

(r1, r2, r3)→ (RCM, xi, yi)→ (RCM, ρ, αi, x̂i, ŷi)

Use the adiabatic expansion (Born-Oppenheimer like), where ρ is the slow coordinate

Ψ(ρ, Ω) = ∑
n

ρ−5/2fn(ρ)Φn(ρ, Ω)

Decompose into Faddeev amplitudes to impose symmetry and boundary condition

Φn(ρ, Ω) = ∑i φn,i(ρ, Ωi)

For given ρ, solve the hyper-angular equation,(
K̂2 +

2m
h̄2 ρ2 ∑

i
V(
√

2ρ sin αi) + 4

)
Φn(ρ, Ω) = ν2

nΦn(ρ, Ω).

Betzalel Bazak (HUJI) Multipole analysis of RF reactions in ultracold atoms EFB22, 9 September, 2013 13 / 21



Road-map for Efimov Physics

To get analytic results for the 3-body problem,

Assume short-range interaction and large scattering length

Remove center of mass and adopt the hyper-spherical coordinates

(r1, r2, r3)→ (RCM, xi, yi)→ (RCM, ρ, αi, x̂i, ŷi)
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Road-map for Efimov Physics

We assume our interaction is of zero range and s-wave only, and solve for low energy.

Therefore, the potential is expressed as boundary condition,[
1

2αiΦ
∂

∂αi
2αiΦ

]
αi=0

= −
√

2ρ
1
as
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The result is a 1-D equation for f (ρ) and E, with an effective 1
ρ2 potential,(

− ∂2

∂ρ2 +
2m
h̄2 (

h̄2

2m
ν2

n(ρ)− 1/4
ρ2 −Qnn − E)

)
fn(ρ) = ∑

n 6=n′
(2Pnn′

∂

∂ρ
+ Qnn′ )fn′ (ρ)
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The Unitary Limit

In the unitary limit, |a| → ∞, ν does not depend on ρ, and the channels decouples.
The hyper-radial equation is similar to the Bessel equation,

− d2f (ρ)
dρ2 +

ν2
L − 1/4

ρ2 f (ρ) = εf (ρ)

with ν0 ≈ 1.00624i, and ν2 ≈ 2.82334.

1 Bound state, En = −h̄2κ2
n/2m < 0:

f (n)B (ρ) ∝ κn
√

ρKν0 (κnρ)

where to avoid the Thomas collapse, a 3-body repulsive force is to be introduced, for
example U(ρ ≤ ρ0) = ∞ for some finite ρ0, resulting in the famous Efimov spectrum,

En

E0
= e−2πn/|ν0 | ≈ 515−n.

2 Scattering state, E = h̄2q2/2m > 0:

fL(ρ) ∝
√

qρ

R
[
sin δLJνL (qρ) + cos δLYνL (qρ)

]
where the 3-body phase shift is determined by fL(ρ0) = 0.
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Matrix Elements Calculation

The r2 operator reads ∑i r2
i = ρ2 + 3R2

CM.

For the Q̂ operator, ri = RCM −
√

2
3 yi,

r2
i YM

2 (r̂i) = ρ2 cos2 αiYM
2 (ŷi)

|〈f |ĤI |i〉|2 ∝
1
62 |〈ψB‖∑

i
r2

i Y0‖ψs〉|2 +
1

152 |〈ψB‖∑
i

r2
i Y2(r̂i)‖ψd〉|2

(dashed line - full numerical calculation for finite a)
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Trimer Photoassociation: Results

kBT = E3 kBT = 0.2E3
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red - r2 monopole, blue - quadrupole, and black - their sum

Betzalel Bazak (HUJI) Multipole analysis of RF reactions in ultracold atoms EFB22, 9 September, 2013 17 / 21



Log-periodic oscillations

We found another fingerprint of the Efimov physics, a log-periodic oscillations:

For the s-wave, near threshold,

I ≈ 1 +
B2

2
cos(2s0 ln q/κ), B2 ≈ 8.5%

For any multipole, at the high-frequency tail

The near threshold oscillations may be blurred by the finite energy width of the trimer.

The high-frequency tail oscillations are masked by rapid phase shift variation and q4 factor.
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Experimental realization

Magnetically Feshbach resonance based on the spin dependence of the molecular interaction.

from Ketterle group site

Therefore, mf ceases to be good quantum number, but ∑ mf still is.

For example, the state |11〉 is mixed with |02〉 and |20〉
However, this mixing involves high energy scale, and therefore its influence depends on the
energy scales of the system.

Other effects not included: power broadening caused by high amplitude RF, finite time and
finite energy width.
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Experimental realization

Putting all together, fitting our model to the Khaykovich group data:
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Summary and Conclusions

1 The new RF experiments in ultracold-atoms systems carry much in common with
photo-reactions and charged current reactions in nuclei.

2 For spin-flip reaction, the Franck-Condon factor is the leading contribution to the
cross-section, and R(ω) ∝ ω.

3 For frozen-spin reactions the monopole R2 and the quadrupole are the leading terms, and
R(ω) ∝ ω5.

4 We have studied the dimer formation and found that the reaction mechanism changes from
monopole to quadrupole with increasing gas temperature.

5 The trimer formation was studied, with similar dependence on temperature.

6 Log-periodic oscillations are predicted in the trimer photoassociation,
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The Hyper-Spherical Coordinates

To eliminate center of mass, we use the Jacobi coordinates,
(r1, r2, r3)→ (RCM, xi, yi):

xi =
rj − rk√

2
, yi =

√
2
3

(
−ri +

rj + rk

2

)
Now using the hyper-spherical coordinates,
(xi, yi)→ (ρ, αi, x̂i, ŷi):

ρ2 = x2
i + y2

i , tan αi = xi/yi,

The Hamiltonian H = (T + ∑i<j V(|ri − rj|) reads,

T = − h̄2

2m

(
∂2

∂ρ2 +
5
ρ

∂

∂ρ
− K̂2

ρ2

)
where

K̂2 = − 1
sin 2α

∂2

∂α2 sin 2α +
l̂2x

sin2 α
+

l̂2y
cos2 α

− 4

and
∑
i<j

V(|ri − rj|) = ∑
i

V(
√

2ρ sin αi)
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The Adiabatic Expansion

Next we apply the adiabatic expansion,

Ψ(ρ, Ω) = ∑
n

ρ−5/2fn(ρ)Φn(ρ, Ω),

Φn(ρ, Ω) is the solution of the hyper angular equation corresponding to the eigenvalue ν2
n,(

K̂2 +
2m
h̄2 ρ2 ∑

i
V(
√

2ρ sin αi) + 4

)
Φn(ρ, Ω) = ν2

nΦn(ρ, Ω).

fn(ρ) is the solution of the hyper-radial equation,(
− ∂2

∂ρ2 +
2m
h̄2 (Veff(ρ)− E)

)
fn(ρ) = ∑

n 6=n′
(2Pnn′

∂

∂ρ
+ Qnn′ )fn′ (ρ)

where the effective potential is

Veff(ρ) =
h̄2

2m
ν2

n(ρ)− 1/4
ρ2 −Qnn

and the non-adiabatic couplings are

Pnn′ (ρ) =

〈
Φn(ρ, Ω)

∣∣∣∣ ∂

∂ρ

∣∣∣∣Φn′ (ρ, Ω)

〉
Ω

Qnn′ (ρ) =

〈
Φn(ρ, Ω)

∣∣∣∣ ∂2

∂ρ2

∣∣∣∣Φn′ (ρ, Ω)

〉
Ω

Betzalel Bazak (HUJI) Multipole analysis of RF reactions in ultracold atoms EFB22, 9 September, 2013 25 / 21



The Adiabatic Expansion

Next we apply the adiabatic expansion,

Ψ(ρ, Ω) = ∑
n

ρ−5/2fn(ρ)Φn(ρ, Ω),

Φn(ρ, Ω) is the solution of the hyper angular equation corresponding to the eigenvalue ν2
n,(

K̂2 +
2m
h̄2 ρ2 ∑

i
V(
√

2ρ sin αi) + 4

)
Φn(ρ, Ω) = ν2

nΦn(ρ, Ω).

fn(ρ) is the solution of the hyper-radial equation,(
− ∂2

∂ρ2 +
2m
h̄2 (Veff(ρ)− E)

)
fn(ρ) = ∑

n 6=n′
(2Pnn′

∂

∂ρ
+ Qnn′ )fn′ (ρ)

where the effective potential is

Veff(ρ) =
h̄2

2m
ν2

n(ρ)− 1/4
ρ2 −Qnn

and the non-adiabatic couplings are

Pnn′ (ρ) =

〈
Φn(ρ, Ω)

∣∣∣∣ ∂

∂ρ

∣∣∣∣Φn′ (ρ, Ω)

〉
Ω

Qnn′ (ρ) =

〈
Φn(ρ, Ω)

∣∣∣∣ ∂2

∂ρ2

∣∣∣∣Φn′ (ρ, Ω)

〉
Ω

Betzalel Bazak (HUJI) Multipole analysis of RF reactions in ultracold atoms EFB22, 9 September, 2013 25 / 21



The Adiabatic Expansion

Next we apply the adiabatic expansion,

Ψ(ρ, Ω) = ∑
n

ρ−5/2fn(ρ)Φn(ρ, Ω),

Φn(ρ, Ω) is the solution of the hyper angular equation corresponding to the eigenvalue ν2
n,(

K̂2 +
2m
h̄2 ρ2 ∑

i
V(
√

2ρ sin αi) + 4

)
Φn(ρ, Ω) = ν2

nΦn(ρ, Ω).

fn(ρ) is the solution of the hyper-radial equation,(
− ∂2

∂ρ2 +
2m
h̄2 (Veff(ρ)− E)

)
fn(ρ) = ∑

n 6=n′
(2Pnn′

∂

∂ρ
+ Qnn′ )fn′ (ρ)

where the effective potential is

Veff(ρ) =
h̄2

2m
ν2

n(ρ)− 1/4
ρ2 −Qnn

and the non-adiabatic couplings are

Pnn′ (ρ) =

〈
Φn(ρ, Ω)

∣∣∣∣ ∂

∂ρ

∣∣∣∣Φn′ (ρ, Ω)

〉
Ω

Qnn′ (ρ) =

〈
Φn(ρ, Ω)

∣∣∣∣ ∂2

∂ρ2

∣∣∣∣Φn′ (ρ, Ω)

〉
Ω

Betzalel Bazak (HUJI) Multipole analysis of RF reactions in ultracold atoms EFB22, 9 September, 2013 25 / 21



The Adiabatic Expansion

Next we apply the adiabatic expansion,

Ψ(ρ, Ω) = ∑
n

ρ−5/2fn(ρ)Φn(ρ, Ω),

Φn(ρ, Ω) is the solution of the hyper angular equation corresponding to the eigenvalue ν2
n,(

K̂2 +
2m
h̄2 ρ2 ∑

i
V(
√

2ρ sin αi) + 4

)
Φn(ρ, Ω) = ν2

nΦn(ρ, Ω).

fn(ρ) is the solution of the hyper-radial equation,(
− ∂2

∂ρ2 +
2m
h̄2 (Veff(ρ)− E)

)
fn(ρ) = ∑

n 6=n′
(2Pnn′

∂

∂ρ
+ Qnn′ )fn′ (ρ)

where the effective potential is

Veff(ρ) =
h̄2

2m
ν2

n(ρ)− 1/4
ρ2 −Qnn

and the non-adiabatic couplings are

Pnn′ (ρ) =

〈
Φn(ρ, Ω)

∣∣∣∣ ∂

∂ρ

∣∣∣∣Φn′ (ρ, Ω)

〉
Ω

Qnn′ (ρ) =

〈
Φn(ρ, Ω)

∣∣∣∣ ∂2

∂ρ2

∣∣∣∣Φn′ (ρ, Ω)

〉
Ω

Betzalel Bazak (HUJI) Multipole analysis of RF reactions in ultracold atoms EFB22, 9 September, 2013 25 / 21



The Faddeev Decomposition

Using Faddeev decomposition,

Φn(ρ, Ω) = ∑
i

φn,i(ρ, Ωi)

We assume our interaction is of zero range and s-wave only, Therefore the only partial wave to
be considered for the bound state is lx = 0, ly = L.

Now the solution is,

φn,i(ρ, Ωi) =
gν,L(αi)

sin(2αi)
YL,M

lx ,ly
(x̂i, ŷi)

where

gν,L(αi) = cosL α

(
∂

∂α

1
cos α

)L
sin
[
ν
(

α− π

2

)]
,

YL,M
lx ,ly

(x̂, ŷ) = ∑
mx ,my

〈lxmxlymy|LM〉Ymx
lx
(x̂)Y

my
ly
(ŷ)

In the low energy limit, the boundary condition reads[
1

2αiΦ
∂

∂αi
2αiΦ

]
αi=0

= −
√

2ρ
1
as
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(x̂, ŷ) = ∑
mx ,my

〈lxmxlymy|LM〉Ymx
lx
(x̂)Y

my
ly
(ŷ)
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