Alpha-cluster structures in light hypernuclei

Y. Funaki^(a), T. Yamada^(b), E. Hiyama^(a), K. Ikeda^(a)

^(a) Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198, Japan

^(b) Laboratory of Physics, Kanto Gakuin University Yokohama 236-8501, Japan

It is well established that the famous Hoyle state, the second 0^+ state in ${}^{12}C$, has the 3α -particle condensate character, as a product state occupying a lowest and identical Sorbit [1-4], with a dilute gas-like structure of weakly interacting 3α particles. We also have proposed that the sixth 0⁺ state of ¹⁶O, observed around the 4 α breakup shreshold, is the candidate of the α condensate state of 4α particles [3]. It is also interesting to investigate how the condensate character changes if a Λ particle is added to the condensates. In this contribution, we discuss the condensate $+\Lambda$ states and other alpha-cluster states in $^{13}_{\Lambda}$ C. We introduce a new fully-microscopic cluster model wave function which we call Hyper-THSR wave function. This is based on the THSR (Tohsaki-Horiuchi-Schuck-Röpke) wave function, which has been used in the study of α condensates in light nuclei. We note that the THSR wave function gives extremely nice description of ¹²C nucleus, and ⁸Be as well [4]. Concerning the Λ hypernuclei, it should also be mentioned that the Hyper-THSR wave function is flexible and a shrinkage effect of, for example, the Hoyle state, by injecting the A particle, as pointed out in several previous papers [5-7], is easy to handle. We show that the Λ particle reduces the spatial size of the Hoyle state from $R_{\rm rms} = 3.8$ fm to $R_{\rm rms} = 2.8$ fm. According to the spatial shrinkage, the condensate fraction is also reduced from 70 % to 50 %. In the excited states of ¹²C there are still a few mysterious 0⁺ resonances which might have exotic cluster structures. The second 2^+ resonance state was also recently observed and is considered to be a family member of the α condensate[8]. We show that the Λ particle plays an interesting role as a probe to investigate the core ¹²C nucleus, since it does not give any disturbance from the effect of the antisymmetrization to the core nucleus. The structures of the mysterious excited states are clarified by the Λ particle. For example, the 0_4^+ state is shown to have a clear 3α -linear-chain structure and the 0_3^+ state a ⁸Be + α structure, together with the corresponding rotational band structures for 2^+ and 4^+ states.

- [1] A. Tohsaki et al., Phys. Rev. Let. 87, 192501 (2001).
- [2] Y. Funaki et al., Phys. Rev. C 67, 051306(R) (2003).
- [3] Y. Funaki et al., Phys. Rev. Lett. 101, 081502 (2008).
- [4] Y. Funaki et al., Phys. Rev. C 80, 064326 (2009).
- [5] T. Yamada *et al.*, Prog. Theor. Phys. Suppl. **81**, 104 (1985).
- [6] E. Hiyama *et al.*, Phys. Rev. Lett. **85**, 270 (2000).
- [7] E. Hiyama and T. Yamada, Prog. Part. Nucl. Phys. 63, 339 (2009).
- [8] M. Itoh et al., Phys. Rev. C 84, 054308 (2011).

E-mail:

funaki@riken.jp