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The expansion of the wave function on a basis of Hyperspherical Harmonics (HH) and
subsequent resolution of the Schrödinger equation is an established methodology for calcu-
lations in nuclear and atomic physics. The advantage in using such a method lies in the
fact that the HHs (in addition to their completeness and asymptotic behaviour) are eigen-
functions of the grand angular momentum operator K̂, generalization for A > 2 (where A
is the number of particles) of the ordinary angular momentum.

One of the main issues one has to deal with in using HHs as a basis is the fact that they
have no well-defined permutational symmetry, while, for a fermionic system, one seeks an
antisymmetric wave function. For a growing number of particles an effective HH symmetriza-
tion method had been developed in Ref. [1]. This method is however rather complicated
and the cost in terms of resources and cpu time is heavy. Recently, an alternative to the
antisymmetrization of the basis wave functions has been proposed in Refs. [2,3], making it
possible to work directly with HHs with no permutational symmetry (NSHH).

The main idea is the following: the permutation operators P̂ij (P̂ij being the operator

that exchanges particles i and j) commute with the Hamiltonian Ĥ,
[
P̂ij, Ĥ

]
= 0; then

all non degenerate eigenstates of the Hamiltonian must have a well-defined permutational
symmetry. To identify the correct antisymmetric state one can perform an analysis of the
wave function using the Casimir operator of the permutation group, Ĉ =

∑
P̂ij.

Our version of the method includes from the beginning the spin and isospin wave func-
tions in the construction of the basis. This allows us to consider also realistic NN potentials,
for which only the total angular momentum J is a good quantum number.

The individuation of the state with correct symmetry is performed directly with the use
of the Casimir operator Ĉ. Analogously to what is done with the Lawson method [4] for the
removal of the spurious center of mass motion in Shell Model calculations, we add a ”pseudo
potential” γĈ to the Hamiltonian, obtaining a modified Hamiltonian Ĥ ′ = Ĥ + γĈ. It can
be shown that if the parameter γ is large enough, the antisymmetric states are brought in
the lowest part of the spectrum. Using a sufficiently high value for γ, also higher states of
the spectrum can be found with this method. The advantage in the use of this modified
Hamiltonian lies in the fact that, using a Lanczos algorithm for the diagonalization, only few
steps are needed to identify the first eigenvalues of the Hamiltonian, leading to a considerable
advantage in terms of CPU time.

The main problem in using a HHs expansion is the number of basis functions, related to
the maximum grand angular momentum number KMAX . To improve the convergence we
have used the EIHH (Effective Interaction Hyperspherical Harmonics) formalism [5], thus



Table 1: Effective interaction-NSHH results for E0 (ground state energy, in MeV) and rRMS

(root mean square radius, in fm) of 4He with AV18 potential.

present work Reference [10]
Kmax E0 rRMS E0 rRMS

8 –24.999 1.5089 –25.000 1.509
12 –24.491 1.5176 –24.492 1.518
16 –24.313 1.5181 –24.315 1.518
20 –24.266 1.5176 –24.268 1.518

making it possible to study different central NN potential models (with and without spin-
and isospin dependence) for the nuclei of 4He and 6Li, in addition, for 4He we also consider
the realistic AV18 NN interaction. As discussed in Ref. [6] the results obtained for energies
and radii agree well with those in literature. As example we present our 4He results with
AV18 in Table 1. It is evident that the agreement with Ref. [7] (in which a symmetrization
algorithm for the HHs is used) is almost perfect.

We are currently working on an extension of the presented method for the inclusion of
three-nucleon forces.
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