Characteristics of $d + \alpha$ Bound and Resonant States from Analytic Continuation of the Effective-Range Expansion

L.D. Blokhintsev^(a), L.I. Nikitina^(a), Yu.V. Orlov^(a), D.A. Savin^(a)

 $^{(a)}$ Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

Asymptotic normalization coefficients (ANCs) for $a \rightarrow b + c$ processes are important characteristics of bound and resonant nuclear states. The ANC C_l is proportional to the vertex constant G_l which is expressed directly in terms of the residue of the partial bc scattering amplitude at the pole corresponding to the bound or resonant state a (l is the orbital angular momentum). In the present work one-[1] and two-channel [2] approaches using the expansion of the effective-range function K(E) in powers of energy E are applied to the $d + \alpha$ system. The coefficients of the K(E) expansion are found by fitting the $d\alpha$ phase shifts from the analyses [3,4]. By analytic continuation of K(E) thus obtained to the corresponding poles we calculate characteristics of D wave $d\alpha$ resonances with J^{π} = $1^+, 2^+, 3^+$. The ANCs C_l and VCs G_l (l = 0, 2) for the ground ⁶Li state are also found. Note that the ANCs for ⁶Li determine the cross section of the radiative capture reaction ${}^{4}\text{He}(d,\gamma){}^{6}\text{Li}$, which is the main process for the ${}^{6}\text{Li}$ creation in the Universe. The positions and widths of 2^+ - and 3^+ -resonances found in the one-channel approach with account of the Coulomb interaction are close to experimental ones [5]. The ANCs and VCs for these resonances are calculated for the first time. Their values are complex as distinct from the bound state case. The 1⁺-resonance and the bound state of ⁶Li $(J^{\pi} = 1^{+})$ are considered jointly in the two-channel (S + D) effective-range approach with the fixed binding energy of ⁶Li in the $d + \alpha$ channel (1.47 MeV). The 1⁺-resonance properties are mainly determined by the D channel whereas those of the bound state are determined by the S channel. For the bound state we obtain $C_0 = (1.96 \div 2.30) \text{fm}^{-1/2}$, which is close to the value given in [6]. Due to low accuracy of the phase-shift analyses the calculated $C_2 = (-0.12 \div 0.09) \text{fm}^{-1/2}$ turns out to be quite sensitive to the approximation details.

- [1] Yu.V.Orlov, B.F.Irgaziev, L.I.Nikitina, Phys. At. Nucl. 73, 757 (2010).
- [2] L.D.Blokhintsev, D.A.Savin, Few-Body Syst. 2013. DOI 10.1007/s00601-012-0544.
- [3] W.Grüebler et al., Nucl. Phys. A 242, 245 (1975).
- [4] V.M.Krasnopol'sky et al., Phys. Rev. C. 43, 822 (1991).
- [5] D.R.Tilley et al., Nucl. Phys. A **708**, 3 (2002).
- [6] L.D.Blokhintsev et al., Phys. Rev. C 48, 2390 (1993).

E-mail:

blokh@srd.sinp.msu.ru